Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Year range
1.
Acta Pharmaceutica Sinica B ; (6): 3561-3574, 2023.
Article in English | WPRIM | ID: wpr-1011127

ABSTRACT

WS9326A is a peptide antibiotic containing a highly unusual N-methyl-E-2-3-dehydrotyrosine (NMet-Dht) residue that is incorporated during peptide assembly on a non-ribosomal peptide synthetase (NRPS). The cytochrome P450 encoded by sas16 (P450Sas) has been shown to be essential for the formation of the alkene moiety in NMet-Dht, but the timing and mechanism of the P450Sas-mediated α,β-dehydrogenation of Dht remained unclear. Here, we show that the substrate of P450Sas is the NRPS-associated peptidyl carrier protein (PCP)-bound dipeptide intermediate (Z)-2-pent-1'-enyl-cinnamoyl-Thr-N-Me-Tyr. We demonstrate that P450Sas-mediated incorporation of the double bond follows N-methylation of the Tyr by the N-methyl transferase domain found within the NRPS, and further that P450Sas appears to be specific for substrates containing the (Z)-2-pent-1'-enyl-cinnamoyl group. A crystal structure of P450Sas reveals differences between P450Sas and other P450s involved in the modification of NRPS-associated substrates, including the substitution of the canonical active site alcohol residue with a phenylalanine (F250), which in turn is critical to P450Sas activity and WS9326A biosynthesis. Together, our results suggest that P450Sas catalyses the direct dehydrogenation of the NRPS-bound dipeptide substrate, thus expanding the repertoire of P450 enzymes that can be used to produce biologically active peptides.

2.
Chinese Herbal Medicines ; (4): 98-104, 2021.
Article in Chinese | WPRIM | ID: wpr-953689

ABSTRACT

Objective: Peptidyl alkaloids, a series of important natural products can be assembled by fungal non-ribosomal peptide synthetases (NRPSs). However, many of the NRPSs associated gene clusters are silent under laboratory conditions, and the traditional chemical separation yields are low. In this study, we aim to discovery and efficiently prepare fungal peptidyl alkaloids assembled by fungal NRPSs. Methods: Bioinformatics analysis of gene cluster containing NRPSs from the genome of Penicillium thymicola, and heterologous expression of the putative gene cluster in Aspergillus nidulans were performed. Isolation, structural identification, and biological evaluation of the product from heterologous expression were carried out. Results: The putative tri-modular NRPS AncA was heterologous-expressed in A. nidulans to give anacine (1) with high yield, which showed moderate and selective cytotoxic activity against A549 cell line. Conclusion: Heterologous expression in A. nidulans is an efficient strategy for mining fungal peptidyl alkaloids.

3.
Chinese Journal of Biotechnology ; (12): 1845-1857, 2021.
Article in Chinese | WPRIM | ID: wpr-887767

ABSTRACT

Non-ribosomal peptide synthetases catalyze the biosynthesis of structurally and functionally diverse non-ribosomal peptide natural products, which have broad applications in pharmaceutical, agricultural, and industrial sectors. Engineered non-ribosomal peptide synthetases can be used to produce novel non-ribosomal peptides through combinatorial biosynthesis. This conforms to the concept of green chemistry, thus attracts increasing attention across the world. Herein, three different engineering strategies were summarized, and recent advances in this field were reviewed.


Subject(s)
Biological Products , Peptide Synthases/genetics , Peptides , Protein Engineering
4.
Biomedical and Environmental Sciences ; (12): 272-279, 2018.
Article in English | WPRIM | ID: wpr-690660

ABSTRACT

<p><b>OBJECTIVE</b>Unbiased next generation sequencing (NGS) is susceptible to interference from host or environmental sequences. Consequently, background depletion and virome enrichment techniques are usually needed for clinical samples where viral load is much lower than background sequences.</p><p><b>METHODS</b>A viral Sequence Independent Targeted Amplification (VSITA) approach using a set of non-ribosomal and virus-enriched octamers (V8) was developed and compared with traditionally used random hexamers (N6). Forty-five archived clinical samples of different types were used in parallel to compare the V8 and N6 enrichment performance of viral sequences and removal performance of ribosomal sequences in the step of reverse transcription followed by quantitative PCR (qPCR). Ten sera samples from patients with fever of unknown origin and 10 feces samples from patients with diarrhea of unknown origin were used in comparison of V8 and N6 enrichment performance following NGS analysis.</p><p><b>RESULTS</b>A minimum 30 hexamers matching to viral reference sequences (sense and antisense) were selected from a dataset of random 4,096 (46) hexamers (N6). Two random nucleotides were added to the 5' end of the selected hexamers, and 480 (30 × 42) octamers (V8) were obtained. In general, VSITA approach showed higher enrichment of virus-targeted cDNA and enhanced ability to remove unwanted ribosomal sequences in the majorities of 45 predefined clinical samples. Moreover, VSITA combined with NGS enabled to detect not only more viruses but also achieve more viral reads hit and higher viral genome coverage in 20 clinical samples with diarrhea or fever of unknown origin.</p><p><b>CONCLUSION</b>The VSITA approach designed in this study is demonstrated to possess higher sensitivity and broader genome coverage than traditionally used random hexamers in the NGS-based identification of viral pathogens directly from clinical samples.</p>


Subject(s)
Humans , Base Sequence , Genome, Viral , High-Throughput Nucleotide Sequencing , Nucleic Acid Amplification Techniques , Methods , RNA, Viral , Genetics , Real-Time Polymerase Chain Reaction , Virus Diseases , Diagnosis , Virology , Viruses
5.
Chinese Journal of Biotechnology ; (12): 1547-1554, 2017.
Article in Chinese | WPRIM | ID: wpr-310574

ABSTRACT

Dental biofilms are composed of hundreds of bacterial species, among which Streptococcus mutans is widely recognized as the major pathogen of dental caries. The cariogenic potential of S. mutans is related to its ability to form a robust biofilm on the tooth surface and its acidogenic and acid-tolerant properties. Co-evolution of S. mutans with the host has resulted in the diversity of secondary metabolism of S. mutans in strain level. A variety of secondary metabolites, including 10 bacteriocins (mutacins) and one hybrid Polyketide/Non-Ribosomal Peptide type compound, have been characterized. Studies on these secondary metabolites indicate that they play a significant role either in interspecies or in inter-kingdom interactions in the dental biofilm. As more S. mutans strains are isolated and sequenced, additional secondary metabolites with novel functions will be discovered. The study of secondary metabolites in S. mutans is anticipated to be helpful for oral disease treatment and prevention by providing new strategies.

SELECTION OF CITATIONS
SEARCH DETAIL