Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Year range
1.
Malaysian Journal of Microbiology ; : 463-472, 2022.
Article in English | WPRIM | ID: wpr-979387

ABSTRACT

Aims@#The synergistic bio-activity between oleaginous yeast and microalga has been recognized, which would enhance lipid production as biodiesel feedstock. Nevertheless, yeast and microalga require different conditions for optimal growth. In this study, the locally isolated oleaginous yeast Rhodotorula toruloides and microalga Chaetoceros muelleri were co-cultivated to enhance biomass and lipid production.@*Methodology and results@#The growth characteristics of both yeast and microalga monocultures were initially determined prior to optimizing the co-cultivation conditions. The biomass and lipid productivity of the co-culture were investigated and compared to their monocultures. The results showed that R. toruloides grew actively within 3 days while C. muelleri exhibited more prolonged cultivation, up to 21 days. The co-cultivation could be carried out optimally using growth media at pH 6, light intensity of 15,000 lux and yeast/microalga ratio of 1:2, yielding the highest biomass productivity determined at 0.18 g/l/day and lipid production of 17%. The lipid productivity of the co-culture increased by 42% and 75% as compared to monocultures of yeast and microalga, respectively. Furthermore, the biomass productivity was also higher than the monoculture, about 1.2-fold for the yeast and 13-fold for the microalga.@*Conclusion, significance and impact of study@#The findings revealed that co-cultivation of yeast and microalga is a viable technique for long-term microbial oil production.

2.
Chinese Journal of Biotechnology ; (12): 565-577, 2022.
Article in Chinese | WPRIM | ID: wpr-927728

ABSTRACT

Food wastes are rich in nutrients and can be used for producing useful chemicals through biotransformation. Some oleaginous microorganisms can use food wastes to produce lipids and high value-added metabolites such as polyunsaturated fatty acids, squalene, and carotenoids. This not only reduces the production cost, but also improves the economic value of the products, thus has large potential for commercial production. This review summarized the advances in food waste treatment, with a focus on the lipid production by oleaginous microorganisms using food wastes. Moreover, challenges and future directions were prospected with the aim to provide a useful reference for related researchers.


Subject(s)
Biofuels , Biotransformation , Food , Lipids , Refuse Disposal
3.
Chinese Journal of Biotechnology ; (12): 846-859, 2021.
Article in Chinese | WPRIM | ID: wpr-878600

ABSTRACT

Microbial oils are potential resources of fuels and food oils in the future. In recent years, with the rapid development of systems biology technology, understanding the physiological metabolism and lipid accumulation characteristics of oleaginous microorganisms from a global perspective has become a research focus. As an important tool for systems biology research, omics technology has been widely used to reveal the mechanism of high-efficiency production of oils by oleaginous microorganisms. This provides a basis for rational genetic modification and fermentation process control of oleaginous microorganisms. In this article, we summarize the application of omics technology in oleaginous microorganisms, introduced the commonly used sample pre-processing and data analysis methods for omics analysis of oleaginous microorganisms, reviewe the researches for revealing the mechanism of efficient lipid production by oleaginous microorganisms based on omics technologies including genomics, transcriptomics, proteomics (modification) and metabolomics (lipidomics), as well as mathematical models based on omics data. The future development and application of omics technology for microbial oil production are also proposed.


Subject(s)
Fermentation , Lipids , Metabolomics , Proteomics , Technology
4.
Electron. j. biotechnol ; 38: 1-9, Mar. 2019. tab, graf
Article in English | LILACS | ID: biblio-1051273

ABSTRACT

BACKGROUND: Microbial oils produced by diverse microorganisms are being considered as alternative sources of triglycerides for biodiesel production. However, the standalone production of biodiesel from microorganisms is not currently economically feasible. In case of yeasts, the use of low-value nutrient sources in microbial production and the implementation of cost-efficient downstream processes could reduce costs and make microbial lipids competitive with other commodity-type oils in biodiesel production. Industrial biodiesel synthesis from oleaginous seeds is currently based on a multistep process. However, a simple process called in situ transesterification (ISTE), which takes place within the biomass without a previous lipid extraction step, is receiving increasing interest. In this work, the optimal conditions for an ISTE process to obtain biodiesel from previously selected oleaginous yeast (Rhodotorula graminis S1/S2) were defined using the response surface methodology (RSM). RESULTS: Using the RSM approach, the optimal conditions for the maximum yield with minimum reaction time included a methanol-to-biomass ratio of 60:1, 0.4 M H2SO4, and incubation at 70°C for 3 h. The optimized in situ process yield was significantly higher (123%) than that obtained with a two-step method in which fatty acids from saponifiable lipids were first extracted and then esterified with methanol. The composition of the fatty acid methyl ester mixture obtained from R. graminis S1/S2 by ISTE met Uruguayan standards for biodiesel. CONCLUSION: The characteristics achieved by the optimized method make microbial oil a potential alternative for biodiesel production from yeast at an industrial scale.


Subject(s)
Yeasts/metabolism , Biofuels , Reaction Time , Rhodotorula , Biomass , Environment , Esterification , Esters , Fatty Acids , Renewable Energy , Lipids , Methylation
5.
Braz. j. microbiol ; 43(2): 627-634, Apr.-June 2012. tab
Article in English | LILACS | ID: lil-644479

ABSTRACT

Microbial lipids, which are also known as single cell oils (SCO), are produced by oleaginous microorganisms including oleaginous bacteria, yeast, fungus and algae through converting carbohydrates into lipids under certain conditions. Due to its unique environment having extremely low temperature and anoxia, the Tibetan Plateau is amongst the regions with numerous rare ecotypes such as arid desert, salt marsh, alpine permafrost, hot spring, and lawn. By using a rapid, convenient screening method, we identified 31 strains of oleaginous microorganisms from different habitats in the Tibetan Plateau, which include wetlands, lawn, hot spring, alpine permafrost, and saline-alkali soil. Molecular identity analysis showed that they belong to 15 different species, 7 of which are reported for the first time as lipid-producing microorganisms, that is, Cladosporium sp., Gibberella fujikuro, Ochrobactrum sp., Plectosphaerella sp., Tilletiopsis albescens, Backusella ctenidia, and Davidiella tassiana. The distribution of the oleaginous microorganisms varies with habitats. 11 strains were found in hot spring (35.5%), 10 in farmland (32.3%), 6 in lawn (19.4%), 2 in sand (6.4%), 1 in wetland (3.2%), and 1 in permafrost (3.2%). Carbon utilization analysis indicated that most of these filamentous fungi can use xylose and carboxymethyl cellulose (CMC) as carbon source, where Backusella ctenidia, Fusarium sp. and Gibberella fujikuroi have the strongest capability.


Subject(s)
Carboxymethylcellulose Sodium , Fermentation , Fungi/genetics , Fungi/isolation & purification , In Vitro Techniques , Yeasts/genetics , Yeasts/isolation & purification , Plant Oils/analysis , Polymerase Chain Reaction/methods , Xylose/analysis , Enzyme Activation , Methodology as a Subject
6.
Braz. arch. biol. technol ; 55(1): 29-46, Jan.-Feb. 2012. ilus, tab
Article in English | LILACS | ID: lil-622678

ABSTRACT

Since centuries vegetable oils are consumed as human food but it also finds applications in biodiesel production which is attracting more attention. But due to being in competition with food it could not be sustainable and leads the need to search for alternative. Nowdays microbes-derived oils (single cell oils) seem to be alternatives for biodiesel production due to their similar composition to that of vegetable oils. However, the cold flow properties of the biodiesel produced from microbial oils are unacceptable and have to be modified by an efficient transesterification. Glycerol which is by product of transesterification can be valorised into some more useful products so that it can also be utilised along with biodiesel to simplify the downstream processing. The review paper discusses about various potent microorganisms for biodiesel production, enzymes involved in the lipid accumulation, lipid quantification methods, catalysts used in transesterification (including enzymatic catalyst) and valorisation of glycerol.

SELECTION OF CITATIONS
SEARCH DETAIL