Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Pharmaceutical Analysis ; (6): 421-429, 2023.
Article in Chinese | WPRIM | ID: wpr-991155

ABSTRACT

Chiral metal-organic frameworks(CMOFs)with enantiomeric subunits have been employed in chiral chemistry.In this study,a CMOF formed from 6-methoxyl-(8S,9R)-cinchonan-9-ol-3-carboxylic acid(HQA)and ZnCl2,{(HQA)(ZnCl2)(2.5H2O)}n was constructed as a chiral stationary phase(CSP)via an in situ fabrication approach and used for chiral amino acid and drug analyses for the first time.The{(HQA)(ZnCl2)(2.5H2O)}n nanocrystal and the corresponding chiral stationary phase were systematically characterised using a series of analytical techniques including scanning electron microscopy,X-ray diffraction,Fourier transform infrared spectroscopy,circular dichroism,X-ray photoelectron spectros-copy,thermogravimetric analysis,and Brunauer-Emmett-Teller surface area measurements.In open-tubular capillary electrochromatography(CEC),the novel chiral column exhibited strong and broad enantioselectivity toward a variety of chiral analytes,including 19 racemic dansyl amino acids and several model chiral drugs(both acidic and basic).The chiral CEC conditions were optimised,and the enantioseparation mechanisms are discussed.This study not only introduces a new high-efficiency member of the MOF-type CSP family but also demonstrates the potential of improving the enantiose-lectivities of traditional chiral recognition reagents by fully using the inherent characteristics of porous organic frameworks.

2.
Journal of Pharmaceutical Analysis ; (6): 227-237, 2019.
Article in Chinese | WPRIM | ID: wpr-753367

ABSTRACT

Capillary electrochromatography (CEC) is a micro-scale separation technique which is a hybrid between capillary electrophoresis (CE) and liquid chromatography (LC). CEC can be performed in packed, monolithic and open-tubular columns. In recent three years (from 2016 to 2018), enormous attention for CEC has been the development of novel stationary phases. This review mainly covers the development of novel stationary phases for open-tubular and monolithic columns. In particular, some biomaterials attracted increasing interest. There are no significant breakthroughs in technology and principles in CEC. The typical CEC applications, especially chiral separations are described.

SELECTION OF CITATIONS
SEARCH DETAIL