Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Rev. otorrinolaringol. cir. cabeza cuello ; 83(3): 317-324, 2023. ilus
Article in Spanish | LILACS | ID: biblio-1522095

ABSTRACT

La hipoacusia afecta a más de 1.500 millones de personas mundialmente. Los principales medios de rehabilitación usados son los audífonos e implantes cocleares (IC). El IC eléctrico convierte el sonido en impulsos eléctricos que estimulan, directamente, a las neuronas del ganglio espiral para proveer sensación auditiva. Tiene como desventaja una amplia dispersión espacial de la corriente, limitando la resolución espectral y el rango dinámico de codificación sonoro, lo que conduce a una mala comprensión del habla en entornos ruidosos y mala apreciación de la música. En los últimos años se ha estudiado utilizar estimulación óptica en vez de eléctrica, pues emite estímulos con mayor selectividad espacial. Se han descrito IC ópticos usando luz infrarroja y otros con métodos de optogenética, estos últimos requieren de la expresión de proteínas fotosensibles inducidas por virus adenoasociados. Se ha visto que la selectividad espectral de la estimulación optogenética es indistinguible de la acústica, y permitió tasas de disparo casi fisiológicas con buena precisión temporal hasta 250 Hz de estimulación. Estudios que compararon un sistema de IC óptico con uno eléctrico concluyen que el uso de optogenética permitiría una restauración de la audición con una selectividad espectral mejorada en comparación con un IC eléctrico.


Hearing loss affects more than 1.5 billion people worldwide. The main means of rehabilitation used are hearing aids and cochlear implants (CI). The electrical CI converts sound into electrical impulses that directly stimulate neurons in the spiral ganglion to provide auditory sensation; it has the disadvantage of a wide spatial dispersion of the current, limiting the spectral resolution and the dynamic range of sound coding, which leads to a poor understanding of speech in noisy environments and a poor appreciation of music. In recent years, the use of optical stimulation instead of electrical stimulation have been studied since it emits stimuli with greater spatial selectivity. Optical CIs have been described using infrared light and others using optogenetic methods, the latter requiring the expression of photosensitive proteins induced by adeno-associated viruses. The spectral selectivity of optogenetic stimulation has been found to be indistinguishable from acoustic stimulation and allowed near-physiological firing rates with good temporal accuracy up to 250 Hz stimulation. Studies comparing an optical and an electrical CI system conclude that the use of optogenetics would allow hearing restoration with improved spectral selectivity compared to an electrical CI.


Subject(s)
Cochlear Implantation/methods , Optogenetics/methods , Hearing Loss/rehabilitation , Cochlear Implants
2.
J. epilepsy clin. neurophysiol ; 21(3)set. 2015. ilus, tab
Article in Portuguese | LILACS | ID: lil-772154

ABSTRACT

To explore complex mechanisms in the brain is an expensive task, which requires a combination of technological development and theoretical advances in neurobiology. In fact, it still is extremely challenging to diagnose accurately and treat some neurological diseases like drug-resistant epilepsy. In some cases, pharmacological interventions, electrical stimulation and surgery in epilepsy can be the specific cause of cognitive impairments and/or psychiatric comorbidities. Therefore, developing more selective strategies to control events produced by abnormal brain activity is mandatory. Our objective was to synthesize and organize information from the literature about the fundamental concepts that support the combination of optogenetics and closed-loop strategies in experimental epilepsy. We also sought to discuss how affordable would be the implementation of these emergent techniques. For this purpose, we first reviewed the literature on the closed-loop optogenetics and its applications for experimental epilepsy. Then, in order to evaluate the feasibility of this approach, we organized the information available in the literature on the materials necessary, and their respective costs. The combination of real-time detection and optogenetics has enormous potential to produce breakthroughs in neuroscience and its use for seizure control will certainly open new possibilities for more effective treatments of epilepsy. Overall, the costs of implementing a robust system with a high temporal precision and accuracy for detection and interference in seizures are relatively small. In addition, costs can be even lower if researchers choose open source hardware tools and software. Therefore, implementation of optogenetics with strategies of closed-loop in experimental epilepsy seems to demand more joint interdisciplinary efforts and innovative scientific questions than financial resources.


Investigar mecanismos complexos no cérebro é uma tarefa dispendiosa, que requer a combinação de desenvolvimento tecnológico e avan- ços teóricos em neurobiologia. De fato, realizar diagnósticos e tratar apropriadamente desordens neurológicas, como epilepsia resistente ao tratamento farmacológico, ainda é um grande desafio. Em alguns casos, as intervenções farmacológicas, a estimulação elétrica e a cirúrgica em epilepsia podem ser as próprias causadoras de prejuízos cognitivos e/ou comorbidades psiquiátricas. Portanto, é mandatório o desenvolvi- mento de estratégias mais seletivas para controlar eventos gerados por atividade anormal do encéfalo. Nosso objetivo foi sintetizar e organizar informações da literatura sobre os conceitos fundamentais que dão suporte à combinação de optogenética e estratégias de alça fechada em epilepsia experimental. Além disso, objetivamos discutir o quão financeiramente acessível seria a implementação dessas novas técnicas. Para isso, primeiramente revisamos a literatura sobre optogenética e estratégias de alça fechada e suas aplicações para epilepsia experimental. Em seguida, com o objetivo de avaliar quão acessível seria essa abordagem, organizamos a informação disponível na literatura sobre os materiais necessários e seus respectivos custos. A combinação de detecção em tempo real e optogenética tem um potencial enorme para produzir avanços em neurociências e seu uso para o controle de crises certamente abrirá novas possibilidades para tratamentos mais eficientes da epilepsia. Em geral, os custos para a implementação de um sistema robusto, com alta precisão temporal e acurácia para detecção e interferência em crises são relativamente pequenos. Além disso, eles podem ser ainda menores se os pesquisadores optarem por ferramentas de hardware e software de fonte aberta. Portanto, a implementação da optogenética com estratégia de alça fechada em epilepsia experimental parece demandar mais esforços interdisciplinares conjuntos e perguntas científicas inovadoras do que recursos financeiros.


Investigar los mecanismos complejos en el cerebro es una tarea costosa, que requiere una combinación de desarrollo tecnológico y los avances teóricos en la neurobiología. De hecho, todavía es um gran desafio diagnosticar con precisión y tratar apropriadamente trastornos neurológicos como la epilepsia resistente al tratamiento farmacológico. En algunos casos, las intervenciones farmacológicas, la estimulación eléctrica y la ciru- gía pueden ser por sí mismas la causa de los deterioros cognitivos y/o comorbilidades psiquiátricas. Por esta razon, es obligatorio el desarrollo de estrategias más selectivas para controlar los eventos producidos por la actividad cerebral anormal. Nuestro objetivo fue sintetizar y organizar la información de la literatura acerca de los conceptos fundamentales que soportan la combinación de la optogenética y estrategias de bucle cerrado en la epilepsia experimental. Además, tratamos de discutir cuán asequible sería la implementación de estas nuevas técnicas. Para ello, primero hemos revisado la literatura sobre la optogenética y las estrategias de bucle cerrado y sus aplicaciones en la epilepsia experimental. Luego, con el fin de evaluar cómo sería este enfoque económico, organizamos la información disponible en la literatura sobre los materiales requeridos y sus costos. La combinación de la detección en tiempo real y la optogenética tiene un enorme potencial para producir avances en la neurociencia y su uso para control de las crisis epilépticas sin duda abrirá nuevas posiblidades para tratamientos más eficaces de la epilepsia. Generalmente, los costos de implementación de un sistema robusto con una alta precisión temporal y la exactitud de detección y de interfencia en las convulsiones son relativamente pequeños. Además, los costos pueden ser incluso más bajos si los pesquisadores eligierenherramientas de hardware y software de código abierto y libre acceso. Por lo tanto, la aplicación de la optogenética con la estrategia de bucle cerrado en la epilepsia experimental parece exigir más esfuerzos interdisciplinarios conjuntos y preguntas científicas innovadoras que recursos financieros.


Subject(s)
Humans , Epilepsy , Neurobiology , Neurosciences , Optogenetics
3.
Rev. bras. eng. biomed ; 28(3): 294-307, jul.-set. 2012. ilus, tab
Article in Portuguese | LILACS | ID: lil-659033

ABSTRACT

Ao longo dos últimos 50 anos, o uso da luz, em especial o laser, vem promovendo grandes avanços em diversas áreas da ciência e da tecnologia. Na última década o uso de estímulos ópticos no campo da biomédica tem despertado grande interesse no meio acadêmico e na indústria. Dois ramos que se destacam pelo seu crescimento são: a estimulação óptica direta e a optogenética. A primeira utiliza diferentes parâmetros da luz para adequar o efeito desejado na interação com o tecido biológico. A segunda faz uso de engenharia genética para tornar os tecidos biológicos sensíveis à luz. A estimulação neural por infravermelho (estimulação óptica direta) não necessita de contato direto com o tecido e apresenta maior seletividade especial se comparada à estimulação elétrica, mas tem a capacidade restrita de ativar (despolarizar) os neurônios. A optogenética, entretanto, pode ser utilizada para manipular o tecido neural tornando-o sensível à luz; sendo, então, possível despolarizar ou hiperpolarizar os neurônios codificados, assim como monitorar as ativações por meio de codificação de proteínas fluorescentes sensíveis à tensão elétrica. Tanto a técnica de estimulação óptica por infravermelho ou a técnica de optogenética, vêm sendo aplicadas apenas à modelos animais. Os resultados mostram, entretanto, que há grande viabilidade de aplicação da estimulação óptica em seres humanos. Futuramente, tais técnicas poderão substituir o atual padrão ouro para a ativação neural, a estimulação elétrica, em aplicações envolvendo doenças neurológicas específicas.


Within the last 50 years the light and specially the laser has fomented great advances in several areas of science and technology. During the past decade the use of optical stimuli in the biomedical research field have been of great interest for both academy and industry. Two research branches that can be highlighted due to its growth are: direct optical stimulation and optogenetic. The first one uses different parameters of light to optimize the desired effect on the tissue interaction. The other branch works with genetic engineering technics to make cells sensitive to light. The neural stimulation by infrared (direct optical stimulation) does not require direct contact with the tissue and has higher spatial selectivity when compared to electrical stimulation, but it has restricted ability to activate (depolarize) neurons. The optogenetic, however, can be used to manipulate the neural tissue depolarizing or hyperpolarizing encoded neurons, as well as monitor activations by encoding fluorescent proteins sensitive to voltage. The stimulation by infrared optical or optogenetic, has been applied only to animal models although there is a great possibility for human applications. In the future, it may even replace existing techniques such as electrical brain stimulation to treat specific neurological diseases.

SELECTION OF CITATIONS
SEARCH DETAIL