Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Rev. bras. farmacogn ; 21(6): 1043-1051, Nov.-Dec. 2011. ilus, tab
Article in English | LILACS | ID: lil-602296

ABSTRACT

The present study investigated the antinociceptive effects of Ocimum basilicum L. (Lamiaceae) leaf essential oil (LEO) and (-)-linalool (LIN) in formalin (2 percent)-, glutamate (25 µM)- and capsaicin (2.5 µg)- induced orofacial nociception models in mice. The involvement of these substances was further evaluated on the neuronal excitability of the hippocampal dentate gyrus. Male mice (n=8/group) were pretreated separately with LEO and by LIN (50, 100, and 200 mg/kg, i.p.), morphine (5 mg/kg, i.p.) and vehicle (saline + Tween 80 0.2 percent), before injection of nociceptive agent into the right upper lip (perinasal area). The LEO and LIN reduced the nociceptive face-rubbing behaviour in both phases on formalin test. LEO and LIN, at high doses, produced significantly antinociceptive effect in the capsaicin and glutamate tests. In hippocampal slices, LEO inhibited the population spike generated by stimulation of the hylus (antidromic stimulation), with an IC50 of 0.1±0.05 mg/mL. This response was reversibly blocked by lidocaine (0.5 mg/mL), a known voltage-dependent sodium channel antagonist and by LIN (0.5 mg/mL). Our results suggest that LEO and LIN modulate neurogenic and inflammatory pain in the tests of orofacial nociception induced by formalin, capsaicin and glutamate. Part of these effects may be associated with decreased peripheral and central neuronal excitability.

2.
Rev. bras. farmacogn ; 21(6): 1138-1143, Nov.-Dec. 2011. graf
Article in English | LILACS | ID: lil-602303

ABSTRACT

This study investigated the possible antinociceptive effect of p-cymene in different tests of orofacial nociception. The animals (mice) were pretreated (i.p.) with p-cymene (25, 50, 100 mg/kg), morphine (5 mg/kg), or vehicle (0.2 percent Tween 80+saline), and were then subsequently administered, subcutaneously into their upper lip: formalin, capsaicin, and glutamate. The nociceptive behavior response was characterized by the time in s that the mice remained rubbing the orofacial region, for a period of 40 min in the formalin test (first phase, 0-6 min; and second phase, 21-40 min), and for 42 and 15 min in the capsaicin and glutamate tests, respectively. To verify the possible opioid involvement in the antinociceptive effects, naloxone (i.p.) was administered into the mice 15 min prior to the pretreatment with p-cymene (100 mg/kg). Finally, whether or not the p-cymene evoked any change in motor performance in the Rota-rod test was evaluated. The results showed that the treatment with p-cymene, at all doses, reduced (p<0.001) the nociceptive behavior in all nociception tests. The antinociceptive effect of p-cymene was antagonized by naloxone (1.5 mg/kg). Additionally, mice treated with p-cymene did not show any change in motor performance. In conclusion, p-cymene attenuated orofacial nociception, suggesting an involvement of the opioid system in this effect. Thus, p-cymene might represent an important biomolecule for management and/or treatment of orofacial pain.

3.
Biol. Res ; 44(4): 357-361, 2011. ilus, tab
Article in English | LILACS | ID: lil-626735

ABSTRACT

The aims of the present study were to assess the influence of: a) trait anxiety on orofacial pain; and b) orofacial pain on state anxiety. Forty-four rats were initially exposed to the free-exploratory paradigm for the evaluation of their anxiety profiles. In accordance to the parameter "Percentage of time in the novel side", the animals were considered as presenting high or low levels of trait anxiety when presenting values below the 1st quartile, or above the 3rd quartile, respectively. A week later, formalin-1.5% was injected into the upper lip of each animal. The behavioural nociceptive response, characterized by increased orofacial rubbing (OR), was quantified for 30 minutes, as follows: Total time OR (0-30 minutes: total pain), 1st phase OR (0-6 minutes: neurogenic pain), and 2nd phase OR (12-30 minutes: inflammatory pain). Immediately after this test, but still under the effect of formalin, the rats were submitted to the Elevated Plus-maze test (EPM). The results showed that the high trait anxiety individuals presented higher frequency of OR than the low trait anxiety ones, except during the neurogenic pain period. However, no correlation was found between OR frequency and levels of state anxiety presented on the EPM. In conclusion, the animals presenting higher anxiety profiles were the most susceptible to orofacial pain, nevertheless, orofacial pain did not influence state anxiety.


Subject(s)
Animals , Male , Rats , Anxiety/psychology , Facial Pain/psychology , Disease Models, Animal , Exploratory Behavior , Pain Measurement , Rats, Wistar
4.
Journal of Korean Academy of Conservative Dentistry ; : 587-599, 2002.
Article in Korean | WPRIM | ID: wpr-203711

ABSTRACT

Extracellular single unit recordings were made from the ventral posteromedial thalamic (VPM) nociceptive neurons to determine mechanoreceptive field (RF) and response properties. A total of 44 VPM thalamic nociceptive neurons were isolated from rats anesthetized with urethane-chloralose. Based on responses to various mechanical stimuli including touch, pressure and pinch applied to the RF, 32 of 44 neurons were classified as nociceptive specific (NS) neuron. The other 12 neurons, classified as wide dynamic range (WDR), showed a graded response to increasingly intense stimuli, with a maximum discharge to noxious pinch. The VPM nociceptive neurons showed various spontaneous activity ranged from 0-6 Hz. They were located throughout the VPM, and had an contralateral RF including mainly intraoral (and perioral) regions. The RF size was relatively small, and very few neurons had a receptive field involving 3 trigeminal divisions. The NS neurons activated only by pressure and pinch stimuli had high mechanical thresholds compared to WDR neurons activated also by touch stimuli. The VPM nociceptive neurons were tested with suprathershold graded mechanical stimuli. Most of 21 NS and 8 WDR neurons showed a progressive increase in number of spikes as mechanical stimulus intensity was increased. In some neurons, the responses reached a peak before the highest intensity was given. Application of 5 mM CoCl2 (10 microl) solution to the trigeminal subnucleus caudalis did not produce any significant changes in the spontaneous activity, RF size, mechanical threshold, and response to suprathresold mechanical stimuli of 9 VPM nociceptive neurons tested. 17 of 33 VPM nociceptive neurons responded to noxious heat as well as noxious mechanical stimuli applied to their RF. Application of the mustard oil, a small-fiber excitant and inflammatory irritant, to the right maxillary first molar tooth pulp induced an immediate but short-lasting neuronal discharges upto approximately 4 min in 16 of 42 VPM nociceptive neurons. These results suggest that VPM thalamic nucleus may contribute to the sensory discriminative aspect of orofacial nociception.


Subject(s)
Animals , Rats , Hot Temperature , Molar , Mustard Plant , Neurons , Nociception , Nociceptors , Plant Oils , Tooth
SELECTION OF CITATIONS
SEARCH DETAIL