Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
The Journal of The Japanese Society of Balneology, Climatology and Physical Medicine ; : 449-450, 2014.
Article in English | WPRIM | ID: wpr-375496

ABSTRACT

<b>Introduction:</b> Mineralogical, granulometrical and chemical investigations of Brenta’s silt-clay confirmed its common origin with natural Euganean Thermal Muds (ETM)<sup>1)</sup> opening perspectives in the treatment of inflammatory pathologies as rheumatic diseases. Basing on these evidences, surface energy investigations of Brenta’s silt-clay and ETM by TVS modelling were considered within correlation studies between physic-chemical and tensiometric data.<BR><b>Objectives: </b>Basing on Brenta’s silt-clay and ETM common origin, the aim of this work was to confirm the suitability of Brenta’s silt-clay in thermal field by comparative analyses of their matrices and on these basis hypothesize the potentialities of Brenta’s silt-clay in mudtherapy and cosmetic field.<BR><b>Materials and Methods: </b>Brenta’s silt-clay (BrentaKerÒ) samples and ETM were collected respectively from EGAP’s gravel pit and Euganean thermal spa’s maturation plant, undergone at maturation process employing thermal water at different temperature, investigated using (a) DSA10-Kruss tensiometer (diiodomethane, PFPE, glycerine as liquid tests) for surface energy characterization, and (b) Perkin Elmer TOC Analyser for C (%) and H (%) detection. Tensiometric characterizations were performed by measurement of contact angles (deg) of different liquid tests converted successively in surface energy (mN/m) by Owens mathematical model <sup>2)</sup>. Contact angles of PFPE were performed by Perfluoropolyether Contact Angle Measurement Method (PCAM). <BR><b>Results: </b>Correlation degree between dispersed surface energy component (DC) of Brenta’s silt-clay and contact angles of PFPE (deg) measured during 6 weeks of maturation resulted satisfactory (R2=0.90). Considering the typical maturation’s temperature measured from third week to sixth (40°Ct3, 41°Ct4, 42°Ct5, 43°Ct6), the correlation degree between them and values of DC (mN/m) of Brenta’s silt-clay (DCt3=18.9 mN/m, DCt4=20.3 mN/m, DCt5=19.9 mN/m, DCt6=20.6 mN/m) resulted maximal (R2=1). Brenta silt-clay and ETM DC levels (DCt3=21.2 mN/m, DCt4=20.4 mN/m, DCt5=20.9 mN/m, DCt6=20.7 mN/m) demonstrated optimally correlated (R2=0.97). TOC analyses performed on Brenta’s silt-clay and ETM after maturation showed an increase of C% respectively +1.4% and +4.3% and percentage loss of H of -37.8% and -10.7% with an increase of DC and PC of +17.8 mN/m and +21.0 mN/m confirming the great affinity between the two geomaterials. Regarding ETM it demonstrated also the capability to deliver DC (-44.8%) uptaking PC (+50%) during mudtherapy as result of the modification of selective permeability of skin. <BR><b>Conclusions:</b> Chemical-mineralogical analyses, tensiometric investigations, and studies of correlations between Brenta’s silt-clay and ETM demonstrated a great affinity between them. Surface energy evaluations of ETM, its capability to deliver DC to skin uptaking PC during mudtherapy modifying skin’s selective permeability and favouring the permeation of therapeutic substances product during maturation process, suggest new perspectives for the employment of Brenta’s silt-clay in thermal field as anti-inflammatory agent for rheumatic diseases and in cosmetic sector.

2.
The Journal of The Japanese Society of Balneology, Climatology and Physical Medicine ; : 453-454, 2014.
Article in English | WPRIM | ID: wpr-375494

ABSTRACT

<b>Introduction: </b>TVS mud index<sup>1)</sup> is a tensiometric marker for quality and maturation process control of Italian Euganean Thermal Muds (ETM) which sensitivity defined on objective basis their quality and maturation degree. <BR><b>Objectives: </b>The goal was to assess the maturation process of Biofango by TVS mud index (Sanraku-en spas centre, Japan and Osservatorio Termale Permanente-OTP, Italy), and its organic compounds by TOC analyses (University of Padova, Italy).<BR><b>Materials and Methods:</b> Biofango was prepared using KomatsuClay, MotoyamaClay, WakuraDiatomite and KasaokaBentonite giving K02 (Bentonite 1.25, Kaolinite 1.5, Diatomite 0.25) and A01 (KasaokaBentonite 1.25, Kaolinite 0.5, Diatomite 0.25). Final Biofango BFM+0%Dolomite, MAT1+10%Dolomite, MAT2+18%Dolomite, and MAT3+35%Dolomite were analyzed by TOC (Perkin-Elmer-2400) and DSA10-Krüss employing (a) PFPE, Fomblin HC/OH-1000, diiodomethane, glycerine as liquid tests and (b) Owens-Wendt mathematical model for conversion of contact angles in surface energy parameters<sup>2)</sup>.<BR><b>Results:</b> The behaviour of C(%) in MAT1, MAT2, and MAT3 during maturation process (20°C) showed respectively (a) MAT1t0h=1.26%, MAT1t216h=0.91%, MAT1t360=1.08%, MAT1t576h=1.23%, MAT1t720h=0.98%, (b) MAT2t0h=2.36%, MAT2t216h=1.80%, MAT2t360=1.49%, MAT2t576h=1.86%, MAT2t720h=1.68%, (c) MAT3t0h=3.29%, MAT3t216h=2.71%, MAT3t360=2.57%, MAT3t576h=2.6%, MAT3t720h=2.7%. C% decrease demonstrating the influence of Dolomite in Biofango mixtures. Dispersed energy components (DC) of MAT1, MAT2, and MAT3 showed respectively (a) MAT1t0h=3.0mN/m, MAT1t216h=3.1mN/m, MAT1t360=2.9mN/m, MAT1t576h=3.8mN/m, MAT1t720h=2.5mN/m, (b) MAT2t0h=2.1mN/m, MAT2t216h=2.2mN/m, MAT2t360=3.1mN/m, MAT2t576h=3.7mN/m, MAT2t720h=2.6mN/m, (c)MAT3t0h=2.0mN/m, MAT3t216h=2.6mN/m, MAT3t360=2.6mN/m, MAT3t576h=2.9mN/m, MAT2t720h=3.0mN/m. On the other side TVS mud index showed respectively (a) MAT1t0h=68.7mN/m, MAT1t216h=70.26mN/m, MAT1t360=71.78mN/m, MAT1t576h=64.69mN/m, MAT1t720h=71.84mN/m, (b) MAT2t0h=74.06mN/m, MAT2t216h=71.69mN/m, MAT2t360= 70.36mN/m, MAT2t576h=65.83mN/m, MAT2t720h=71.23mN/m, (c) MAT3t0h=75.9mN/m, MAT3t216h=73.05mN/m, MAT3t360=73.34mN/m, MAT3t576h=68.52mN/m, MAT3t720h=68.66mN/m proportionally inverse with DC behaviour. MAT3 with highest content in Dolomite demonstrated great capability to uptake DC during maturation process with consequently decrease of TVS mud index levels accordingly with TOC result.<BR><b>Conclusions: </b>Tensiometric investigations of Biofango underlined the links between chemical and surface energy data. The high sensitivity of TVS mud index consented to follow directly in a non invasive way the structural-surface changes in Biofango mixtures occurred during maturation process opening at new perspective for their control.

3.
The Journal of The Japanese Society of Balneology, Climatology and Physical Medicine ; : 457-458, 2014.
Article in English | WPRIM | ID: wpr-375484

ABSTRACT

<b>Introduction: </b>Brenta’s silt-clay consist of silt with clay containing Italian Dolomites minerals extracted from the catchment area of Brenta river. Sediments were investigated by SEM, XRD, XRF and particle size granulometer. The presence of SiO<sub>2</sub> (34.16%), CaO (17.12%), and Al2O3 (11.15%) as principal elements is comparable with the typical composition of Euganean Thermal Muds (ETM) of Euganean Thermal Area (ETA) which average level of SiO<sub>2</sub>, CaO, and Al<sub>2</sub>O<sub>3</sub> are respectively 38.75%, 17.74%, and 7.70%<sup>1)</sup>. Tensiometric investigation of Brenta’s silt-clay were performed hypothesizing its employ in mudtherapy. <BR><b>Objectives:</b> Surface energy of natural ETM and its maturation process were monitored by TVS mud index, a tensiometric marker for the determination of the quality of a thermal mud<sup>2)</sup>. The aim of this work was to determine the quality of Brenta’s silt-clay by tensiometric approach introducing it in the field of thermalism.<BR><b>Materials and Methods: </b>Brenta’s silt-clayey (ie Brenta Ker) samples were collected from EGAP’s gravel pit, undergone at maturation process for 6 weeks employing thermal water, investigated using DSA10-Kruss tensiometer with diiodomethane, PFPE, glycerine as liquid tests. <BR>  Tensiometric characterizations were performed by measurement of contact angles (deg) of different liquid tests and their conversion in surface energy (mN/m) by Owens mathematical model <sup>3)</sup>. TVS mud index levels were determined trough the measurements of contact angles of PFPE <sup>4)</sup> by Perfluoropolyether Contact Angle Measurement Method (PCAM) for maturation process (mN/m eq./weeks) and speed (m*Nm<sup>-1</sup>/h) evaluations. <BR><b>Results: </b>The correlation degree between ETM XRF elements data (ppm) and those of Brenta’s silt-clay (ppm) was satisfactory (R2=0.82) confirming the common origin of two kind of matrices. Considering 6 weeks of maturation, surface energy profile of Brenta’s silt-clay, expressed as dispersed component (DC) and polar component (PC), showed respectively 17.84 mN/m and 32.04 mN/m with coefficients of variations (CV%) around 22.43% and 14.29%. TVS mud index levels monitored during maturation process showed a clear decrease in the time (t0=84.02.5 mN/m eq, t1=71.01.9 mN/m eq., t2=79.80.7 mN/m eq., t3=72.63.1 mN/m eq., t4=61.22.6 mN/m eq., t5=65.12.1 mN/m eq., t6=58.81.6 mN/m eq.) underlined by the decrease of maturation speed monitored for 60 days and expressed as DC per hour (t48=0.08 m*Nm<sup>-1</sup>/h, t120=0.03 m*Nm<sup>-1</sup>/h, t144=0.04 m*Nm<sup>-1</sup>/h, t384= 0.02 m*Nm<sup>-1</sup>/h, t1416=0.005 m*Nm<sup>-1</sup>/h).<BR><b>Conclusions: </b>Tensiometric investigations by TVS modelling and maturation speed evaluations confirmed the suitability of Brenta’s silt-clay to be employed in thermal field opening new perspectives in mudtherapy.

4.
The Journal of The Japanese Society of Balneology, Climatology and Physical Medicine ; : 457-458, 2014.
Article in English | WPRIM | ID: wpr-689243

ABSTRACT

Introduction: Brenta’s silt-clay consist of silt with clay containing Italian Dolomites minerals extracted from the catchment area of Brenta river. Sediments were investigated by SEM, XRD, XRF and particle size granulometer. The presence of SiO2 (34.16%), CaO (17.12%), and Al2O3 (11.15%) as principal elements is comparable with the typical composition of Euganean Thermal Muds (ETM) of Euganean Thermal Area (ETA) which average level of SiO2, CaO, and Al2O3 are respectively 38.75%, 17.74%, and 7.70%1). Tensiometric investigation of Brenta’s silt-clay were performed hypothesizing its employ in mudtherapy. Objectives: Surface energy of natural ETM and its maturation process were monitored by TVS mud index, a tensiometric marker for the determination of the quality of a thermal mud2). The aim of this work was to determine the quality of Brenta’s silt-clay by tensiometric approach introducing it in the field of thermalism. Materials and Methods: Brenta’s silt-clayey (ie Brenta Ker) samples were collected from EGAP’s gravel pit, undergone at maturation process for 6 weeks employing thermal water, investigated using DSA10-Kruss tensiometer with diiodomethane, PFPE, glycerine as liquid tests.   Tensiometric characterizations were performed by measurement of contact angles (deg) of different liquid tests and their conversion in surface energy (mN/m) by Owens mathematical model 3). TVS mud index levels were determined trough the measurements of contact angles of PFPE 4) by Perfluoropolyether Contact Angle Measurement Method (PCAM) for maturation process (mN/m eq./weeks) and speed (m*Nm-1/h) evaluations. Results: The correlation degree between ETM XRF elements data (ppm) and those of Brenta’s silt-clay (ppm) was satisfactory (R2=0.82) confirming the common origin of two kind of matrices. Considering 6 weeks of maturation, surface energy profile of Brenta’s silt-clay, expressed as dispersed component (DC) and polar component (PC), showed respectively 17.84 mN/m and 32.04 mN/m with coefficients of variations (CV%) around 22.43% and 14.29%. TVS mud index levels monitored during maturation process showed a clear decrease in the time (t0=84.02.5 mN/m eq, t1=71.01.9 mN/m eq., t2=79.80.7 mN/m eq., t3=72.63.1 mN/m eq., t4=61.22.6 mN/m eq., t5=65.12.1 mN/m eq., t6=58.81.6 mN/m eq.) underlined by the decrease of maturation speed monitored for 60 days and expressed as DC per hour (t48=0.08 m*Nm-1/h, t120=0.03 m*Nm-1/h, t144=0.04 m*Nm-1/h, t384= 0.02 m*Nm-1/h, t1416=0.005 m*Nm-1/h). Conclusions: Tensiometric investigations by TVS modelling and maturation speed evaluations confirmed the suitability of Brenta’s silt-clay to be employed in thermal field opening new perspectives in mudtherapy.

5.
The Journal of The Japanese Society of Balneology, Climatology and Physical Medicine ; : 453-454, 2014.
Article in English | WPRIM | ID: wpr-689241

ABSTRACT

Introduction: TVS mud index1) is a tensiometric marker for quality and maturation process control of Italian Euganean Thermal Muds (ETM) which sensitivity defined on objective basis their quality and maturation degree. Objectives: The goal was to assess the maturation process of Biofango by TVS mud index (Sanraku-en spas centre, Japan and Osservatorio Termale Permanente-OTP, Italy), and its organic compounds by TOC analyses (University of Padova, Italy). Materials and Methods: Biofango was prepared using KomatsuClay, MotoyamaClay, WakuraDiatomite and KasaokaBentonite giving K02 (Bentonite 1.25, Kaolinite 1.5, Diatomite 0.25) and A01 (KasaokaBentonite 1.25, Kaolinite 0.5, Diatomite 0.25). Final Biofango BFM+0%Dolomite, MAT1+10%Dolomite, MAT2+18%Dolomite, and MAT3+35%Dolomite were analyzed by TOC (Perkin-Elmer-2400) and DSA10-Krüss employing (a) PFPE, Fomblin HC/OH-1000, diiodomethane, glycerine as liquid tests and (b) Owens-Wendt mathematical model for conversion of contact angles in surface energy parameters2). Results: The behaviour of C(%) in MAT1, MAT2, and MAT3 during maturation process (20°C) showed respectively (a) MAT1t0h=1.26%, MAT1t216h=0.91%, MAT1t360=1.08%, MAT1t576h=1.23%, MAT1t720h=0.98%, (b) MAT2t0h=2.36%, MAT2t216h=1.80%, MAT2t360=1.49%, MAT2t576h=1.86%, MAT2t720h=1.68%, (c) MAT3t0h=3.29%, MAT3t216h=2.71%, MAT3t360=2.57%, MAT3t576h=2.6%, MAT3t720h=2.7%. C% decrease demonstrating the influence of Dolomite in Biofango mixtures. Dispersed energy components (DC) of MAT1, MAT2, and MAT3 showed respectively (a) MAT1t0h=3.0mN/m, MAT1t216h=3.1mN/m, MAT1t360=2.9mN/m, MAT1t576h=3.8mN/m, MAT1t720h=2.5mN/m, (b) MAT2t0h=2.1mN/m, MAT2t216h=2.2mN/m, MAT2t360=3.1mN/m, MAT2t576h=3.7mN/m, MAT2t720h=2.6mN/m, (c)MAT3t0h=2.0mN/m, MAT3t216h=2.6mN/m, MAT3t360=2.6mN/m, MAT3t576h=2.9mN/m, MAT2t720h=3.0mN/m. On the other side TVS mud index showed respectively (a) MAT1t0h=68.7mN/m, MAT1t216h=70.26mN/m, MAT1t360=71.78mN/m, MAT1t576h=64.69mN/m, MAT1t720h=71.84mN/m, (b) MAT2t0h=74.06mN/m, MAT2t216h=71.69mN/m, MAT2t360= 70.36mN/m, MAT2t576h=65.83mN/m, MAT2t720h=71.23mN/m, (c) MAT3t0h=75.9mN/m, MAT3t216h=73.05mN/m, MAT3t360=73.34mN/m, MAT3t576h=68.52mN/m, MAT3t720h=68.66mN/m proportionally inverse with DC behaviour. MAT3 with highest content in Dolomite demonstrated great capability to uptake DC during maturation process with consequently decrease of TVS mud index levels accordingly with TOC result. Conclusions: Tensiometric investigations of Biofango underlined the links between chemical and surface energy data. The high sensitivity of TVS mud index consented to follow directly in a non invasive way the structural-surface changes in Biofango mixtures occurred during maturation process opening at new perspective for their control.

6.
The Journal of The Japanese Society of Balneology, Climatology and Physical Medicine ; : 449-450, 2014.
Article in English | WPRIM | ID: wpr-689239

ABSTRACT

Introduction: Mineralogical, granulometrical and chemical investigations of Brenta’s silt-clay confirmed its common origin with natural Euganean Thermal Muds (ETM)1) opening perspectives in the treatment of inflammatory pathologies as rheumatic diseases. Basing on these evidences, surface energy investigations of Brenta’s silt-clay and ETM by TVS modelling were considered within correlation studies between physic-chemical and tensiometric data. Objectives: Basing on Brenta’s silt-clay and ETM common origin, the aim of this work was to confirm the suitability of Brenta’s silt-clay in thermal field by comparative analyses of their matrices and on these basis hypothesize the potentialities of Brenta’s silt-clay in mudtherapy and cosmetic field. Materials and Methods: Brenta’s silt-clay (BrentaKerÒ) samples and ETM were collected respectively from EGAP’s gravel pit and Euganean thermal spa’s maturation plant, undergone at maturation process employing thermal water at different temperature, investigated using (a) DSA10-Kruss tensiometer (diiodomethane, PFPE, glycerine as liquid tests) for surface energy characterization, and (b) Perkin Elmer TOC Analyser for C (%) and H (%) detection. Tensiometric characterizations were performed by measurement of contact angles (deg) of different liquid tests converted successively in surface energy (mN/m) by Owens mathematical model 2). Contact angles of PFPE were performed by Perfluoropolyether Contact Angle Measurement Method (PCAM). Results: Correlation degree between dispersed surface energy component (DC) of Brenta’s silt-clay and contact angles of PFPE (deg) measured during 6 weeks of maturation resulted satisfactory (R2=0.90). Considering the typical maturation’s temperature measured from third week to sixth (40°Ct3, 41°Ct4, 42°Ct5, 43°Ct6), the correlation degree between them and values of DC (mN/m) of Brenta’s silt-clay (DCt3=18.9 mN/m, DCt4=20.3 mN/m, DCt5=19.9 mN/m, DCt6=20.6 mN/m) resulted maximal (R2=1). Brenta silt-clay and ETM DC levels (DCt3=21.2 mN/m, DCt4=20.4 mN/m, DCt5=20.9 mN/m, DCt6=20.7 mN/m) demonstrated optimally correlated (R2=0.97). TOC analyses performed on Brenta’s silt-clay and ETM after maturation showed an increase of C% respectively +1.4% and +4.3% and percentage loss of H of -37.8% and -10.7% with an increase of DC and PC of +17.8 mN/m and +21.0 mN/m confirming the great affinity between the two geomaterials. Regarding ETM it demonstrated also the capability to deliver DC (-44.8%) uptaking PC (+50%) during mudtherapy as result of the modification of selective permeability of skin. Conclusions: Chemical-mineralogical analyses, tensiometric investigations, and studies of correlations between Brenta’s silt-clay and ETM demonstrated a great affinity between them. Surface energy evaluations of ETM, its capability to deliver DC to skin uptaking PC during mudtherapy modifying skin’s selective permeability and favouring the permeation of therapeutic substances product during maturation process, suggest new perspectives for the employment of Brenta’s silt-clay in thermal field as anti-inflammatory agent for rheumatic diseases and in cosmetic sector.

SELECTION OF CITATIONS
SEARCH DETAIL