Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 134-143, 2023.
Article in Chinese | WPRIM | ID: wpr-978459

ABSTRACT

ObjectiveTo establish a rat model of diabetic wound by feeding on a high-fat and high-sugar diet combined with intraperitoneal injection of streptozotocin (STZ) and surgical preparation of full-thickness skin defects, observe the effect of cinnamaldehyde on the wound healing of diabetes rats, and explore the therapeutic mechanism of cinnamaldehyde in improving wound healing of diabetes rats based on the PTEN-induced putative kinase (PINK1)/Parkin pathway-mediated mitochondrial autophagy. MethodForty-eight male SD rats were randomly divided into blank group (n=12) and diabetes group (n=36). The diabetes group was further randomly divided into model group, cinnamaldehyde group, and Beifuxin group, with 12 rats in each group. The blank group and the model group received routine disinfection with physiological saline after creating the wounds, while the cinnamaldehyde group received topical application of polyethylene glycol 400 (PEG 400) gel containing 4 μmol·L-1 cinnamaldehyde, and the Beifuxin group received topical application of Beifuxin gel. Dressings were changed once daily. The wound healing rate of each group was observed. On the 7th and 14th days after intervention, the wound tissues of the rats were collected. Hematoxylin and eosin (HE) staining was performed to observe the pathological changes in the local tissues. Immunohistochemistry (IHC) was used to detect the expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), vascular endothelial growth factor (VEGF), and collagen fibers. Immunofluorescence (IF) and Real-time polymerase chain reaction (Real-time PCR) were used to detect the protein, and mRNA expression of PINK1, Parkin, microtubule-associated protein 1 light chain 3 Ⅱ (LC3 Ⅱ). ResultAfter intraperitoneal injection of STZ, compared with the blank group, the random blood glucose values of rats in the diabetic group increased significantly (P<0.01), all higher than 16.7 mmol·L-1, and persistently hyperglycemic for some time after modeling. Compared with the blank group, the model group showed poor growth and healing of granulation tissue in the wounds, and the wound healing rate decreased (P<0.01). On the 7th day after intervention, the blank group had squamous epithelial coverage on the wounds. Compared with the blank group, the model group only had a small amount of scab at the wound edges, with a large number of infiltrating inflammatory cells in the wounds. The protein expression levels of IL-6 and TNF-α in the tissues increased (P<0.01), and the protein and mRNA levels of PINK1, Parkin, and LC3Ⅱ decreased (P<0.01). On the 14th day after the intervention, the granulation tissue in the wounds of the blank group was mature and well-healed. Compared with the blank group, the model group still had infiltrating inflammatory cells and red blood cell exudation. The protein expression levels of VEGF and collagen fibers in the tissues decreased (P<0.01), and the protein and mRNA expression levels of PINK1, Parkin, and LC3Ⅱ increased (P<0.01). Compared with the model group, the cinnamaldehyde group and the Beifuxin group showed better wound healing, with increased wound healing rates (P<0.01). On the 7th day after intervention, the protein expression levels of IL-6 and TNF-α in the tissues decreased (P<0.01), and the protein and mRNA expression levels of PINK1, Parkin, and LC3Ⅱ increased (P<0.01). On the 14th day after intervention, the protein expression levels of VEGF and collagen fibers in the tissues increased (P<0.01), and the protein and mRNA expression levels of PINK1, Parkin, and LC3Ⅱ decreased (P<0.01). ConclusionCinnamaldehyde can promote the wound healing of diabetes rats by increasing the wound healing rate, reducing the levels of inflammatory factors IL-6 and TNF-α, and increasing the levels of VEGF and collagen fibers. Its mechanism may be related to the regulation of the PINK1/Parkin signaling pathway, activation of mitochondrial autophagy, inhibition of inflammatory responses, and promotion of angiogenesis and collagen synthesis, thereby promoting the wound healing of diabetes rats.

2.
China Pharmacy ; (12): 2748-2754, 2021.
Article in Chinese | WPRIM | ID: wpr-904778

ABSTRACT

OBJECTIVE:To investig ate the effects of tenuifolin (TEN)on brain mitochondrial autophagy in Aizheimer ’s disease(AD)model mice. METHODS :Totally 50 male APP/PS1 double transgenic mice were randomly divided into model group,TEN medium-dose+ 3-MA group [TEN 40 mg/(kg·d)+autophagy inhibitor 3-MA 30 mg/(kg·d)] and TEN low-dose , medium-dose and high-dose groups [ 20,40,80 mg/(kg·d)],with 10 mice in each group. In addition ,10 wild-type homologous mice were included in normal control group. Administration groups were intragastrically given corresponding drug solution ;normal control group and model group were intragastrically given 0.3% sodium carboxymethyl cellulose solution ,once a day ,0.01 mL/g, for consecutive 3 months. After last administration ,positive expression [measured by integrated optical density (IOD)] of microtubule associated protein 1 light chain 3(LC3)in neuron was detected ;mRNA expressions of LC3,ubiquitin-binding protein p62,Cathepsin D ,Rab7,phosphatase and tensin homolog deleted on chromosome ten gene-induced putative kinase 1(PINK1) and E 3 ligase(Parkin)as well as protein expressions of LC 3,p62,PINK1 and Parkin were detected in brain mitochondria. RESULTS:Compared with normal control group ,IOD value of LC 3 in neuron as well as mRNA and protein expressions of LC 3, p62,PINK1 and Parkin in brain mitochondria were all increased significantly in model group (P<0.05 or P<0.01),while mRNA expressions of Cathepsin D and Rab 7 were decreased significantly (P<0.05 or P<0.01). Compared wit h model group ,IOD values of LC 3(except for TEN low-dose and medium-dose groups ) in neuron ,mRNA expressions of LC 3,Cathepsin D ,Rab7, PINK1(except for TEN low-dose group )and Parkin (except for TEN low-dose group ) in brain mitochondria as well as protein expressions of LC 3 (except for TEN medium-dose group),PINK1(except fo r TEN high-dose group decreased significantly)and Parkin (except for TEN low-dose group decreased significantly )were increased significantly in TEN low-dose , medium-dose and high-dose groups (P<0.05 or P<0.01);mRNA(except for TEN low-dose group )and protein expressions of p62 were decreased significantly (P<0.05 or P<0.01). Compared with TEN medium-dose group ,the changes of above indexes were inhibited significantly in TEN medium-dose + 3-MA group (P<0.05 or P<0.01). CONCLUSIONS :TEN can induce mitophagy in brain tissue of AD model mice by activating PINK 1/Parkin signaling pathway and improve lysosome function.

SELECTION OF CITATIONS
SEARCH DETAIL