Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Journal of Biomedical Engineering ; (6): 544-550, 2022.
Article in Chinese | WPRIM | ID: wpr-939622

ABSTRACT

The study aimed to evaluate the safety and function of poly(lactic-acid-co-ε-caprolactone) (PLCL)/fibrinogen nanofibers (P/F-Ns), and provide theoretical basis for the clinical application. The surface morphology, mechanical properties, the hydrophilicity and the fibrinogen content of P/F-Ns were tested by scanning electron microscope, the material testing machine, the contact angle meter and the microplate reader, respectively. The cell adhesion, proliferation and ligament remodeling genes expression of Hig-82 cells on P/F-Ns were conducted through cell counting kit-8 (CCK-8) and real-time quantitative PCR analyses, respectively. The results showed that with the increase of the fibrinogen content, the pore sizes and hydrophilicity of three P/F-Ns increased, but the mechanical properties decreased. Cell adhesion and proliferation tests showed that P/F-N-2 held the best ability to promote cell adhesion and proliferation. The ligament remodeling genes expressions of Hig-82 cells on P/F-N-1, P/F-N-2 and P/F-N-3 were all up-regulated compared to P/F-N-0 on days 3 and 7. All the three P/F-Ns containing fibrinogen (P/F-N-1, P/F-N-2 and P/F-N-3) had better biocompatibility compared to P/F-N-0, and could be efficiently applied to the reconstruction of anterior cruciate ligament.


Subject(s)
Anterior Cruciate Ligament Reconstruction , Cell Adhesion , Fibrinogen , Materials Testing , Nanofibers
SELECTION OF CITATIONS
SEARCH DETAIL