Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Anatomy & Cell Biology ; : 85-94, 2015.
Article in English | WPRIM | ID: wpr-23348

ABSTRACT

To date there is no sufficient in vitro fat tissue engineering and a protocol has not been well established for this purpose. Therefore, we evaluated the in vitro influence of two different adipogenic growth media for their stimulation potential on different cell lineages to clearly define the most potent adipogenic growth media for future in vitro tissue engineering approaches. The samples for differentiation were composed of human adipogenic-derived stroma cells (hADSCs) and human bone marrow mesenchymal stroma cells (hMSCs). A normal adipogenic medium (NAM) and a specific adipogenic medium (SAM) were tested for their adipogenic stimulation potential. After 10 days and 21 days the relative gene expression was measured for the adipogenic marker genes PPARgamma2, C/EBPalpha, FABP4, LPL, and GLUT4 detected through real time reverse transcriptase polymease chain reaction (RT-PCR). Other study variables were the comparison between NAM and SAM and between the used cells hADSCs and hMSCs. Additionally an Oil-Red staining was performed after 21 days. Our results revealed that only SAM was significantly (P<0.05) superior in the differentiation process in contrast to NAM for 10 days and 21 days. As well was SAM superior to differentiate the used cell lineages. This was evaluated by the detected marker genes PPARgamma2, C/EBPalpha, FABP4, LPL, and GLUT4 through real time RT-PCR and by Oil-Red staining. In addition, the hMSCs proofed to be equal donor cells for adipogenic differentiation especially when stimulated by SAM. The results suggest that the SAM should be established as a new standard medium for a more promising in vitro adipogenic differentiation.


Subject(s)
Humans , Bone Marrow , Cell Culture Techniques , Cell Lineage , Gene Expression , PPAR gamma , RNA-Directed DNA Polymerase , Tissue Donors , Tissue Engineering
2.
Korean Diabetes Journal ; : 402-408, 2008.
Article in Korean | WPRIM | ID: wpr-99657

ABSTRACT

BACKGROUND: Peroxisome proliferators-activated receptor gamma (PPARgamma) is a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors and known to play a role in regulating the expression of numerous genes involved in lipid metabolism, metabolic syndrome, inflammation, and atherosclerosis. The PPARgamma2 Pro12Ala polymorphism has recently been shown to be associated with diabetic nephropathy. In this study, we evaluated the relationship between PPARgamma2 Pro12Ala polymorphism and type 2 diabetic nephropathy whose duration of diabetes was over 10 years. METHODS: We conducted a case-control study, which enrolled 367 patients with type 2 diabetes. Genotyping of PPARgamma2 Pro12Ala polymorphism was performed using polymerase chain reaction followed by digestion with Hae III restriction enzyme. RESULTS: The genotype or allele frequencies of PPARgamma2 Pro12Ala polymorphism were not significantly different in diabetic patients with or without diabetic nephropathy. The genotype frequencies in terms of diabetic retinopathy and macrovascular complications such as coronary artery disease or stroke were not different either. Interestingly, nephropathy patients with Ala/Pro genotype showed lower C-peptide levels than those of Pro/Pro genotype. CONCLUSION: Our results suggest that PPARgamma2 Pro12Ala polymorphism is not associated with diabetic nephropathy in type 2 diabetic patients.


Subject(s)
Humans , Atherosclerosis , C-Peptide , Case-Control Studies , Coronary Artery Disease , Diabetic Nephropathies , Diabetic Retinopathy , Digestion , Gene Frequency , Genotype , Inflammation , Lipid Metabolism , Peroxisomes , Polymerase Chain Reaction , PPAR gamma , Stroke , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL