Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Year range
1.
The Korean Journal of Orthodontics ; : 304-315, 2018.
Article in English | WPRIM | ID: wpr-716753

ABSTRACT

OBJECTIVE: The purpose of this study was to analyze initial displacement and stress distribution of the maxillofacial complex during dentoskeletal maxillary protraction with various appliance designs placed on the palatal region by using three-dimensional finite element analysis. METHODS: Six models of maxillary protraction were developed: conventional facemask (Type A), facemask with dentoskeletal hybrid anchorage (Type B), facemask with a palatal plate (Type C), intraoral traction using a Class III palatal plate (Type D), facemask with a palatal plate combined with rapid maxillary expansion (RME; Type E), and Class III palatal plate intraoral traction with RME (Type F). In Types A, B, C, and D, maxillary protraction alone was performed, whereas in Types E and F, transverse expansion was performed simultaneously with maxillary protraction. RESULTS: Type C displayed the greatest amount of anterior dentoskeletal displacement in the sagittal plane. Types A and B resulted in similar amounts of anterior displacement of all the maxillofacial landmarks. Type D showed little movement, but Type E with expansion and the palatal plate displayed a larger range of movement of the maxillofacial landmarks in all directions. CONCLUSIONS: The palatal plate served as an effective skeletal anchor for use with the facemask in maxillary protraction. In contrast, the intraoral use of Class III palatal plates showed minimal skeletal and dental effects in maxillary protraction. In addition, palatal expansion with the protraction force showed minimal effect on the forward movement of the maxillary complex.


Subject(s)
Finite Element Analysis , Palatal Expansion Technique , Traction
2.
The Korean Journal of Orthodontics ; : 224-235, 2018.
Article in English | WPRIM | ID: wpr-716089

ABSTRACT

OBJECTIVE: The purpose of this study was to compare the skeletal, dental, and soft-tissue treatment effects of nonextraction therapy using the modified C-palatal plate (MCPP) to those of premolar extraction (PE) treatment in adult patients with Class II malocclusion. METHODS: Pretreatment and posttreatment lateral cephalographs of 40 adult patients with Class II malocclusion were retrospectively analyzed. The MCPP group comprised 20 patients treated with total arch distalization of the maxillary arch while the PE group comprised 20 patients treated with four PE. Fifty-eight linear and angular measurements were analyzed to assess the changes before and after treatment. Descriptive statistics, paired t-test, and multivariate analysis of variance were performed to evaluate the treatment effects within and between the two groups. RESULTS: The MCPP group presented 3.4 mm of retraction, 1.0 mm of extrusion, and 7.3° lingual inclination of the maxillary central incisor. In comparison, the PE group displayed greater amount of maxillary central incisor retraction and retroclination, mandibular incisor retraction, and upper lip retraction (5.3 mm, 14.8°, 5.1 mm, and 2.0 mm, respectively; p < 0.001 for all). In addition, the MCPP group showed 4.0 mm of distalization and 1.3 mm of intrusion with 2.9° distal tipping of the maxillary first molars. CONCLUSIONS: These findings suggest the MCPP is an effective distalization appliance in the maxillary arch. The amount of incisor retraction, however, was significantly higher in the PE group. Therefore, four PE may be recommended when greater improvement of incisor position and soft-tissue profile is required.


Subject(s)
Adult , Humans , Bicuspid , Incisor , Lip , Malocclusion , Molar , Multivariate Analysis , Retrospective Studies
3.
The Korean Journal of Orthodontics ; : 375-383, 2017.
Article in English | WPRIM | ID: wpr-97323

ABSTRACT

OBJECTIVE: The purpose of this study was to evaluate the dental and skeletal effects of the modified C-palatal plate (MCPP) for total arch distalization in adult patients with Class II malocclusion and compare the findings with those of cervical pull headgear. METHODS: The study sample consisted of the lateral cephalograms of 44 adult patients with Class II Division 1 malocclusion, including 22 who received treatment with MCPP (age, 24.7 ± 7.7 years) and 22 who received treatment with cervical pull headgear (age, 23.0 ± 7.7 years). Pre- (T1) and post-treatment (T2) cephalograms were analyzed for 24 linear and angular measurements. Multivariate analysis of variance was performed to evaluate the changes after treatment in each group and differences in treatment effects between the two groups. RESULTS: The mean amount of distalization at the crown and root levels of the maxillary first molar and the amount of distal tipping was 4.2 mm, 3.5 mm, and 3.9° in the MCPP group, and 2.3 mm, 0.6 mm, and 8.6° in the headgear group, respectively. In addition, intrusion by 2.5 mm was observed in the MCPP group. In both groups, the distal movement of the upper lip and the increase in the nasolabial angle were statistically significant (p < 0.001). However, none of the skeletal and soft tissue variables exhibited significant differences between the two groups. CONCLUSIONS: The results of this study suggest that MCPP is an effective treatment modality for total arch distalization in adults.


Subject(s)
Adult , Humans , Crowns , Lip , Malocclusion , Molar , Multivariate Analysis
4.
The Korean Journal of Orthodontics ; : 290-300, 2016.
Article in English | WPRIM | ID: wpr-88848

ABSTRACT

OBJECTIVE: This study aimed to (1) evaluate the effects of maxillary second and third molar eruption status on the distalization of first molars with a modified palatal anchorage plate (MPAP), and (2) compare the results to the outcomes of the use of a pendulum and that of a headgear using three-dimensional finite element analysis. METHODS: Three eruption stages were established: an erupting second molar at the cervical one-third of the first molar root (Stage 1), a fully erupted second molar (Stage 2), and an erupting third molar at the cervical one-third of the second molar root (Stage 3). Retraction forces were applied via three anchorage appliance models: an MPAP with bracket and archwire, a bone-anchored pendulum appliance, and cervical-pull headgear. RESULTS: An MPAP showed greater root movement of the first molar than crown movement, and this was more noticeable in Stages 2 and 3. With the other devices, the first molar showed distal tipping. Transversely, the first molar had mesial-out rotation with headgear and mesial-in rotation with the other devices. Vertically, the first molar was intruded with an MPAP, and extruded with the other appliances. CONCLUSIONS: The second molar eruption stage had an effect on molar distalization, but the third molar follicle had no effect. The application of an MPAP may be an effective treatment option for maxillary molar distalization.


Subject(s)
Crowns , Finite Element Analysis , Molar , Molar, Third
5.
The Korean Journal of Orthodontics ; : 209-214, 2015.
Article in English | WPRIM | ID: wpr-225519

ABSTRACT

Maxillary protraction is the conventional treatment for growing Class III patients with maxillary deficiency, but it has undesirable dental effects. The purpose of this report is to introduce an alternative modality of maxillary protraction in patients with dentoskeletal Class III malocclusion using a modified C-palatal plate connected with elastics to a face mask. This method improved skeletal measurements, corrected overjet, and slightly improved the profile. The patients may require definitive treatment in adolescence or adulthood. The modified C-palatal plate enables nonsurgical maxillary advancement with maximal skeletal effects and minimal dental side effects.


Subject(s)
Adolescent , Humans , Malocclusion , Masks
6.
Korean Journal of Orthodontics ; : 91-102, 2003.
Article in Korean | WPRIM | ID: wpr-654462

ABSTRACT

This study was performed to investigate the effect of immediate orthodontic force on soft and hard tissues surrounding C-Palatal PlateTM in beagle Dog. Immediately after this appliance was implanted on the midpalate of 4 adult beagle Dogs, 400gm continuous orthodontic force was applied. Experimental animals were euthanized at 8weeks, 18weeks, and 22weeks (including post-removal healing time of 4weeks), and a control animal was euthanized at 8weeks after implantation without orthodontic force application. The appliance and the surrounding tissue were studied radiographically, macroscopically, and histologically. The results were as follows : 1. The lateral radiographs taken after euthanasia showed very slight displacement of the vertical plate in the experimental animals, compared with the control animal. Mobility test of all animals confirmed primary stability without any increase of mobility during experimental period. 2. No pathologic changes were found in the healing condition of covering soft tissue and bone-screw interface in experimental animals as well as a control animal. 3. Osseointegration was achieved in the bone-screw interface in 8weeks after implantation and the amount of osseointegration increased in 18weeks. There was little difference of osseointegration between the compression side and the tension side. 4. In the marginal bone area, slight bone apposition and resorption were found regardless of compression and tension side, while there was no change in the control animal. 5. Both 8week-animal and 18week-animal showed the new bone apposition along the surface of screws which were perforated into the nasal cavity, while the control animal showed no change. 6. After 4weeks of plate removal, the covering epithelium was repaired intactly, while the connective tissue showed loose and irregular rearrangement and the connective tissue capsule remained. The C-Palatal PlateTM manifested sufficient anchorage capacity in the context of histological study as well as clinical outcomes, when immediate orthodontic force was applied after implantation.


Subject(s)
Adult , Animals , Dogs , Humans , Connective Tissue , Epithelium , Euthanasia , Nasal Cavity , Osseointegration
SELECTION OF CITATIONS
SEARCH DETAIL