Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
J Biosci ; 1980 Sept; 2(3): 211-225
Article in English | IMSEAR | ID: sea-160020

ABSTRACT

A homogenous and crystalline form of nucleotide pyrophosphatase (EC 3.6.1.9) from Phaseolus aureus (mung bean) seedlings was used for the study of the regulation of enzyme activity by adenine nucleotides. The native dimeric form of the enzyme had a helical content of about 65% which was reduced to almost zero values by the addition of AMP. In addition to this change in the helical content, AMP converted the native dimer to a tetramer. Desensitization of AMP regulation, without an alteration of the molecular weight, was achieved either by reversible denaturation with 6 Μ urea or by passage through a column of Blue Sepharose but additionof phydroxymercuribenzoate desensitized the enzyme by dissociating the native dimer to a monomer. The changes in the quaternary structure and conformation of the enzyme consequent to AMP interaction or desensitization were monitored by measuring the helical content, EDTA inactivation and Zn2+ reactivation, stability towards heat denaturation, profiles of urea denaturation and susceptibility towards proteolytic digestion. Based on these results and our earlier work on this enzyme, we propose a model for the regulation of the mung bean nucleotide pyrophosphatase by association-dissociation and conformational changes. The model emphasizes that multiple mechanisms are operative in the desensitization of regulatory proteins.

2.
J Biosci ; 1979 Mar; 1(1): 13-25
Article in English | IMSEAR | ID: sea-159918

ABSTRACT

Glutamine synthetase (L-glutamate : ammonia ligase, EC 6.3.1.2) from Phaseolus aureus (mung bean) seedlings was purified to homogeneity by ammonium sulphate fractionation, DEAE-cellulose chromatography, Sephadex G-200 gel filtration and affinity chromatography on histidine-Sepharose. The enzyme had a molecular weight of 775,000 ± 25,000. The enzyme consisted of identical subunits with an approximate subunit molecular weight of 50,000. Hyperbolic saturation curves were obtained with the substrates, glutamate, ATP and hydroxylamine. Antibody, raised in the rabbit, against mung bean glutamine synthetase, completely inhibited the activity of the enzyme. Preincubation of the enzyme with glutamate and ATP, prior to the addition of the antibody, partially protected the enzyme against inhibition. The Km values of this enzyme-antibody complex and the native enzyme were identical (glutamate, 2.5mM; ATP, 1 mM; hydroxylamine, 0·5 mM). The Km values of the partially inhibited enzyme (the enzyme pretreated with antibody prior to the addition of substrates) were 2-fold higher than those of the native enzyme. These results suggested that the substrate-induced conformational changes in the enzyme were responsible for the protection against inhibition of the enzyme activity by the antibody.

SELECTION OF CITATIONS
SEARCH DETAIL