Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Article | IMSEAR | ID: sea-217167

ABSTRACT

Microorganisms in close association with the roots of plants can enhance plant growth, through nitrogen fixation (NF) and phosphorus solubilization (PS). Although the type of microbes in close association with different plants varies, their population and genetic capabilities is affected by several factors. Therefore, in this study, the plant growth promoting properties of rhizobacteria present in the rhizosphere of two cassava varieties (Sweet cassava US, bitter cassava ST) indigenous to Iyamho community was explored. The samples were analyzed for total culturable heterotrophic bacteria community and the obtained isolates were screened for NF and PS abilities using a semi-solid N-free medium and Pikovaskya agar respectively. The bacterial population in both agar medium varied, however, the bacterial counts on Luria Bertani (3.67 x 105, 3.35 x 106) was higher than Nutrient agar (2.73 x 105, 2.68 x 105) after incubation for 24 hours at 37oC for sweet and bitter cassava rhizosp here respectively. Also, isolates from sweet cassava had the highest bacteria count in both Nutrient agar and Luria Bertani agar. A total of sixteen isolates were obtained, six phosphate solubilizers, five nitrogen fixers, and five without traits for either NF or PS. The Gram-negative bacterial group was more dominant across all isolates while the dominant genus was Bacillus. This study indicates that the nitrogen fixers and phosphate solubilizers are major constituents of the rhizomicrobe of cassava plants although the distribution varies across cassava varieties. However, sweet cassava rhizosphere harbored more nitrogen-fixing bacteria while both varieties had the same amount of phosphate solubilizing rhizobacteria.

2.
Arq. Inst. Biol. (Online) ; 89: e00162021, 2022. ilus, tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1416879

ABSTRACT

Endophytic bacteria Bacillus safensis RS95 and Pseudomonas hibiscicola RS121 were evaluated for their ability to promote the growth of rice seedlings and produce indole-acetic acid (IAA) and siderophores and to solubilize phosphates. 'Guri' rice seeds were immersed in bacterial endophyte cell suspensions (separated and two-strain mixed), as well as in Escherichia coli DH5α, phosphate-buffered saline (PBS) and water treatments (negative controls). Seeds were sown on agar-water in Petri plates placed vertically at an angle of 65°. The ability of plant growth-promoting endophytic bacteria (PGPEB) to produce IAA and siderophores was determined by Salkowski colorimetric and chrome azurol S (CAS) assays, respectively. Mineral phosphate solubilization activity was calculated by inoculating the endophytes onto medium containing insoluble phosphate. PGPEB showed a positive effect on the growth of rice seedlings, causing a mean growth of shoots and primary-roots of 60 and 67%, respectively. Bacterial strains also showed positive traits for IAA and siderophore production, as well as phosphate-solubilization activity


Subject(s)
Pseudomonas , Oryza/growth & development , Bacillus , Siderophores , Endophytes , Indoleacetic Acids/analysis , Phosphates
3.
Acta sci., Biol. sci ; 43: e51737, 2021. tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1460974

ABSTRACT

Endophytes are growth-promoting agents capable of synthesizing phytohormones, uptaking nutrients, and controlling pathogens. There is a strong potential to exploit them in the agriculture field like biofertilizers and biocontrol agents. In this work, we aimed to evaluate endophytic fungi isolated from Pachystachys lutea for their potential to solubilize phosphate, synthesise indole acetic acid (IAA), antagonize phytopathogens, and promote plant growth under greenhouse conditions. The phosphate solubilization efficiency was assessed on Pikovskaya’s agar medium. For analysis of IAA production, mycelia plugs of endophytes were cultured in Potato Dextrose Broth medium supplemented with L-tryptophan, with Salkowski Reagent, and the absorbance of the culture was measured. The antagonism evaluation of strain Alternaria sp. PL75 against phytopathogens was performed using the paired-culture technique. The promotion of plant growth provided by Alternaria sp. PL75 was evaluated in tomato plants. All strains evaluated were able to solubilize phosphate; however, the strain Alternaria sp. PL75 was the most effective (4.29). Two strains, Nemania sp. PL27 and Alternaria sp. PL75, produced 1.86 and 1.73 & 956;g mL-1 of IAA, respectively. In the antagonism assay, the endophyte Alternaria sp. PL75 and its fungal extract showed the best results against the pathogen Moniliophthora perniciosa. The greenhouse experiment result showed the endophyte Alternaria sp. PL75 increased the plantlets emergency speed index and the percentage of germination from 60 to 81.63%. It was also observed a statistical significance in the shoot length of the treated plants with the endophyte suspension (55.38 cm) compared to the control (41.67 cm).


Subject(s)
Endophytes , Phosphates , Lamiales/growth & development , Acetic Acid/analysis
4.
Malaysian Journal of Microbiology ; : 548-559, 2021.
Article in English | WPRIM | ID: wpr-973860

ABSTRACT

Aims@#This study aims to isolate, characterize and screen the plant growth-promoting bacteria from Zingiberaceae plants. Plant promoting activities such as indole-3-acetic acid (IAA), phosphate solubilization, zinc solubilization and nitrogen-fixing capabilities are determined, and the IAA production of selected isolates are optimized. @*Methodology and results@#Endophytic bacteria were isolated from the plant samples by surface sterilization on nutrient agar (NA) plates and incubated at 30 °C for 2-3 days. The bacteria were identified based on their phenotypic characteristics and 16S rRNA gene sequence analyses. All isolates were identified as genera Bacillus, Lysinibacillus, Kerstersia, Klebsiella and Brucella. The isolates exhibited phosphate solubilization (1.5 ± 0.75-37.5 ± 8.75 Solubilization Index, SI), zinc solubilization (2.5 ± 0-60 ± 1.5 SI) and IAA production (0.1 ± 0.2-115.7 ± 1.6 µg/mL), while 3 isolates possessed nitrogen-fixing capabilities. Five isolates (PHAS-2, PWS-2, PWR-2, PHBS-2 and SCG-2) were selected for IAA optimization. Isolate PWR-2 produced the maximum IAA at 447.7 ± 0 µg/mL when tryptophan concentration was maintained at 1.0%.@*Conclusion, significance and impact of study@#Genera of bacteria included Bacillus, Lysinibacillus, Kerstersia, Klebsiella and Brucella were successfully isolated from Zingiberaceae plants. All the isolates showed the capability to produce IAA, while some isolates exhibited phosphate solubilization and zinc solubilization, and a few possessed nitrogen-fixing capabilities. The potential IAA production isolates could be applied for the enhancement of agricultural production that will be becoming a more widely accepted practice.


Subject(s)
Plant Growth Regulators , Endophytes , Zingiberaceae
5.
Article | IMSEAR | ID: sea-209918

ABSTRACT

Plant growth-promoting rhizobacteria (PGPR) with multiple beneficial traits serve as potentially, ecofriendly,and cost-effective alternatives to chemical fertilizers and pesticides. They have both direct and indirectaffirmative impacts on overall plant growth and health. PGPRs are well known to directly improve the plantgrowth by phytohormone production and availability of minerals in soil. A total of nine soil samples were takenfrom near the rhizospheric zone of different crops and 56 rhizobacterial strains were isolated. Only 16 out of56 rhizobacterial strains were found positive for more than one beneficial trait that included solubilization ofphosphate, indole acetic acid (IAA), siderophore, ammonia and H2S production. Among all PGPR strains,RKM15 was observed having the highest phosphate solubilizing index (3.4), solubilized phosphorus (339mg L−1) and also siderophore unit (70.54 %). The maximum IAA production was observed by RKM25 strain(35.56 µg ml−1). The most promising RKM15 isolate was identified as Pantoea dispersa (MN629239) through16S rRNA gene sequencing technique. This characterized PGPR strain may be used for the development ofbiofertilizers to enhance crop productivity and improvement in soil fertility

6.
J Environ Biol ; 2020 May; 41(3): 592-599
Article | IMSEAR | ID: sea-214516

ABSTRACT

Aim: The present study aimed to investigate the phosphate solubilization potential of agriculturally important fungi, i.e., Aspergillus sp. isolated from the rhizosphere of healthy plants in Abha city, Saudi Arabia.Methodology: Sixteen Aspergillus sp. isolated and tested for phosphate solubilization potential were identified by 5.8S-ITS region sequencing and characterized by 11 ISSR-PCR markers. Finally, the highest phosphate solubilization potential isolates were used in field experiments on cucumber and tomato plants. Results: All Aspergillus niger isolates showed 96–100% similarity to A. niger strains available at GenBank database, Isolate ASAB-5 was most efficient at solubilizing phosphate on Pikovskaya’s medium, with a solubilization index of 2.67, and 235.22 mg l-1 of solubilized phosphate. ISSR-PCR markers revealed is total 142 bands in all isolates, with about 32.3% showing monomorphism and 67.6% polymorphism. Based on genetic similarity and intraspecies variability, the Aspergillus isolates were grouped into two different clusters with about 67.9% genetic similarity. The results of field experiments showed no significant difference between seeds treated with culture filtrate or conidial suspension of ASAB-5; however, both differed remarkably from untreated seeds. Interpretation: The current study confirms the existence of several useful phosphate solubilizing fungi in plants, which may serve as potential biological fertilizers. They are safer than chemical fertilizers and increase the bioavailability of soil phosphates for plants

7.
Acta amaz ; 49(4): 257-267, out. - dez. 2019.
Article in English | LILACS | ID: biblio-1118924

ABSTRACT

Brazil nut is a very important nontimber forest product in the Amazon region. Propagation of this tree still represents a challenge due to slow and uneven seed germination. In this context, plant growth-promoting bacteria can facilitate the process of propagation. The aims of this study were to isolate and characterize endophytic bacteria from the roots of Brazil nut trees in native terra firme forest and cultivation areas in northern Brazil, and to identify mechanisms by which bacteria act in plant growth promotion. Overall, 90 bacterial isolates were obtained from the roots of Brazil nut trees in monoculture, agroforestry and native forest areas by using different semisolid media. The isolates were characterized by sequencing the 16S rRNA gene. Plant growth-promoting characteristics were evaluated by the presence of the nifH gene, aluminum phosphate solubilization and the production of indole compounds. The isolates were affiliated with 18 genera belonging to 5 different classes (α-Proteobacteria, ß-Proteobacteria, γ-Proteobacteria, Bacilli and Actinobacteria). The genus Bacillus was predominant in the forest and monoculture areas. Fourteen isolates presented the nifH gene. Most of the bacteria were able to solubilize aluminum phosphate and synthetize indole compounds. The results indicated high diversity of endophytic bacteria present among the roots of Brazil nut trees, mainly in the agroforestry area, which could be related to soil attributes. Among the 90 isolates, the 22 that presented the best results regarding plant growth promotion traits were good candidates for testing in seedling production of Brazil nut trees. (AU)


Subject(s)
RNA, Ribosomal, 16S , Amazonian Ecosystem , Indole Alkaloids , Bertholletia , Nitrogen Fixation
8.
Article | IMSEAR | ID: sea-214160

ABSTRACT

Abstract: This study evaluated root endophyte bacteria and rhizobacteria in terms ofmultifaceted plant growth promotion (PGP) traits and antagonistic potential against majorfungal pathogens of rice (viz. Rhizoctonia solani, Bipolaris oryzae, Pyricularia oryzae,Ustilaginoidea virens and Sarocladium oryzae). Twenty bacterial isolates from each group(viz. endorhiza and rhizosphere) were isolated from different rice types of North EastIndia. Cultivated rice types were Upland rice (Mima, Kochi and Minil), Lowland HYV rice(Ranjit and Jaya) and Lowland scented rice (Keteki Joha and Kunkuni Joha). Thepopulation of rhizospheric bacteria was higher than the endophyte isolates. Thepopulation counts of endophyte bacteria were the highest in scented rice cultivar(Kunkuni Joha) and for rhizobacterial isolates; the population density was maximum inthe lowland HYV rice (Jaya). The endophytes were more efficient than the rhizobacteria interms of the activity of cellulase, pectinase, ACC-deaminase, production of IAA- likesubstances, solubilization of zinc and mineralization of organic phosphates. In contrast,the rhizobacterial isolates were more efficient in solubilization of inorganic phosphatesand antagonism against major rice fungal pathogens. Through 16S rDNA sequenceanalysis, the promising rhizobacterial isolates showing antagonism against all the fungalpathogens were identified as Brevibacillus reuszeri 12R, Lysinibacillus xylanticus 48R,Bacillus megaterium 58R and Serratia marcescens 79R. These results suggest that the rootbacterial endophytes and rhizobacteria characterized in this study could be successfullyused to promote plant growth and induce fungal resistance in rice plants and can be usedas bioinoculants for enhancing rice growth in the acid soil regions.

9.
J Environ Biol ; 2019 Mar; 40(2): 235-239
Article | IMSEAR | ID: sea-214586

ABSTRACT

Aim: New species of Plant Growth Promoting Rhizobacteria (PGPR), with varying growth promoting and biocontrol ability are often being discovered. They facilitate plant growth either directly by secreting nutrients and hormones or indirectly by providing defence mechanism to the plant. The present study was undertaken to isolate PGPR from the rhizosphere of Solanum lycopersicum and Arachis hypogaea, and test their growth promoting ability and antifungal activity against Fusarium oxysporum. Methodology: PGPRs were isolated from the rhizosphere of S. lycopersicum and A. hypogaea by serial dilution of the rhizospheric soil and identified by 16s rDNA sequencing. The isolates were analysed for antifungal activity against F. oxysporum, indole 3-acetic acid (IAA) production and phosphate solubilisation. For the growth promotion assay, aseptically grown Vigna radiata seedlings were dipped separately in isolated bacterial suspension of PGPR (109 CFU ml-1) and planted in autoclaved soil. Plants were irrigated with 50% Hoagland solution for every 48 hr and maintained at 25 ± 2 °C with 16/8 hr of light and dark photoperiod. Growth promotion was examined in terms of differences in shoot length, root length, fresh weight and dry weight after 12 days of treatment. Results: Six isolates were found to have antifungal activity towards plant pathogen, F. oxysporum. Five isolates showed similarity to Pseudomonas aeruginosa (B7-1, B11-5, B3-1, Rh-1, Rh-2) and one to Pseudomonas putida (B53). All six strains were able to produce IAA, where B53 and B13-1 showed the highest production compared to other strains. P. putida B53 demonstrated the highest plant growth promotion activity by significantly (p<0.05) increasing the growth of V. radiata plants as evidenced by increase in shoot length, root length, fresh and dry weight. Interpretation: The results obtained from the present study supports that PGPRs like Pseudomonas sp. could serve as potential eco-friendly bio-fertilizer and bio- fungicide

10.
Rev. biol. trop ; 66(3): 953-968, jul.-sep. 2018. tab, graf
Article in Spanish | LILACS, SaludCR | ID: biblio-977358

ABSTRACT

Resumen La orquídea Guarianthe skinneri está incluida en la norma NOM-059-ECOL-2010 de México como una especie amenazada. Con el fin de estudiar las BPCV (bacterias promotoras del crecimiento vegetal) en esta orquídea, se recolectaron 10 raíces de diferentes plantas para aislar bacterias asociadas a las raíces, que se analizaron mediante pruebas in vitro como: producción de AIA, fijación de nitrógeno, interacción con el hongo micorrízico Thanatephorus sp. cepa RG26 y solubilización de fosfato. De los 71 aislados bacterianos se caracterizaron 10 cepas mediante secuenciación con el marcador 16s rADN y se identificaron seis cepas: Sphingomonas sp., Sinorhizobium sp., Bacillus sp., Nocardia cerradoensis, Bacillus megaterium y Burkholderia phytofirmans. Se observó que la bacteria Sinorhizobium sp. produjo mayor cantidad de AIA (69.189 µg/ml) y Bacillus sp. presentó mayor reducción de acetileno (10.251 nmol cultivo/96 h). En las interacciones de las bacterias y el hongo RG26 se presentaron cuatro categorías (sumamente positivo, positivo, antagonismo 50-50 e inhibición). En relación a la solubilización de fosfato, la bacteria Burkholderia phytofirmans presentó mayor IS a las 48 y 96 hr con IS de 3.11 y 3.48, respectivamente. Los resultados indican que Bacillus sp. pudiera tener las mejores características para promover el desarrollo de la orquídea G. skinneri mediante la inoculación de semillas y plántulas.


Abstract The Guarianthe skinneri orchid is included in NOM-059-ECOL-2010, Mexico standard as an endangered species. In order to study PGPR (promoting growth plant rhizobacteria) from this orchid, 10 roots were collected from different plants to isolate bacteria associated with the roots, which were analyzed by in vitro tests such as: production of AIA, nitrogen fixation, interaction with the mycorrhizal fungus Thanatephorus sp. strain RG26 and phosphate solubilization. We obtain 71 bacterial isolates, 10 strains of them were characterized by sequencing with the 16d rDNA marker identifying six bacteria: Sphingomonas sp. Sinorhizobium sp. Bacillus sp. Nocardia cerradoensis, Bacillus megaterium and Burkholderia phytofirmans. We observed that the bacterium Sinorhizobium sp. produced a greater amount of AIA (69.189 μg/ml) and Bacillus sp. performed greater acetylene reduction (10.251 nmol cultivo/96h). In the interactions of the bacteria and the fungus RG26, four categories were presented (extremely positive, positive, antagonism 50-50 and inhibition). In relation to the solubilization of phosphate, Burkholderia phytofirmans presented higher IS after 48 and 96 hr with an IS of 3.11 and 3.48, respectively. The results indicate that Bacillus sp. it could have the best characteristics to promote the development of the G. skinneri orchid by inoculating seeds and seedlings. Rev. Biol. Trop. 66(3): 953-968. Epub 2018 September 01.


Subject(s)
Sinorhizobium , Sphingomonas/growth & development , Orchidaceae , Agricultural Inoculants , Fungi , Mexico
11.
Rev. argent. microbiol ; 49(4): 377-383, Dec. 2017. graf, tab
Article in English | LILACS | ID: biblio-958019

ABSTRACT

The aim of this research was to evaluate whether the application of two plant growth-promoting (rhizo)bacteria might reduce nitrogen fertilization doses in cotton. We used strains Azotobacter chroococcum AC1 and AC10 for their proven ability to promote seed germination and cotton growth. These microorganisms were characterized by their plant growth-promoting activities. Then, we conducted a glasshouse study to evaluate the plant growth promoting ability of these strains with reduced doses of urea fertilization in cotton. Results revealed that both strains are capable of fixing nitrogen, solubilizing phosphorus, synthesizing indole compounds and producing hydrolytic enzymes. After 12 weeks, the glasshouse experiment showed that cotton growth was positively influenced due to bacterial inoculation with respect to chemical fertilization. Notably, we observed that microbial inoculation further influenced plant biomass (p<0.05) than nitrogen content. Co-inoculation, interestingly, exhibited a greater beneficial effect on plant growth parameters compared to single inoculation. Moreover, similar results without significant statistical differences were observed among bacterial co-inoculation plus 50% urea and 100% fertilization. These findings suggest that coinoculation of A. chroococcum strains allow to reduce nitrogen fertilization doses up to 50% on cotton growth. Our results showed that inoculation with AC1 and AC10 represents a viable alternative to improve cotton growth while decreasing the N fertilizer dose and allows to alleviate the environmental deterioration related to N pollution.


El objetivo de esta investigación fue evaluar si la aplicación de 2 (rizo)bacterias promotoras del crecimiento vegetal podría reducir la dosis de fertilizante nitrogenado en el cultivo de algodón. Se usaron las cepas Azotobacter chroococcum AC1 y AC10 por su habilidad para promover la germinación de semillas y el crecimiento del algodonero. Estos microorganismos fueron caracterizados sobre la base de sus actividades de promoción del crecimiento vegetal. Luego se realizó un estudio de invernadero con plantas de algodón para evaluar la capacidad de promoción del crecimiento vegetal de dichas cepas con dosis reducidas de urea. Los resultados revelaron que ambas cepas son capaces de fijar nitrógeno, solubilizar fósforo, sintetizar compuestos indólicos y producir enzimas hidrolíticas. Después de 12 semanas, el experimento de invernadero permitió observar que el crecimiento del algodón fue influido positivamente por la inoculación bacteriana con respecto a la fertilización química. En particular, se evidenció que la inoculación microbiana impactó más en la biomasa vegetal (p<0,05) que en el contenido de nitrógeno. Curiosamente, la coinoculación exhibió un mayor efecto positivo sobre los parámetros de crecimiento en comparación con la inoculación simple. Además, se observaron resultados similares, sin diferencias estadísticamente significativas, entre la coinoculación bacteriana más del 50% de urea y el 100% de fertilización. Estos hallazgos indican que la coinoculación de las cepas de A. chroococcum AC1 y AC10 permitiría reducir las dosis de fertilización nitrogenada del cultivo de arroz en hasta el 50% y aliviar, de esta manera, el deterioro ambiental relacionado con la contaminación por N.


Subject(s)
Azotobacter , Gossypium , Fertilizers , Bacteria , Gossypium/growth & development , Nitrogen
12.
Braz. j. microbiol ; 48(2): 294-304, April.-June 2017. tab, graf
Article in English | LILACS | ID: biblio-839377

ABSTRACT

Abstract Aneurinibacillus aneurinilyticus strain CKMV1 was isolated from rhizosphere of Valeriana jatamansi and possessed multiple plant growth promoting traits like production of phosphate solubilization (260 mg/L), nitrogen fixation (202.91 nmol ethylene mL-1 h-1), indole-3-acetic acid (IAA) (8.1 µg/mL), siderophores (61.60%), HCN (hydrogen cyanide) production and antifungal activity. We investigated the ability of isolate CKMV1 to solubilize insoluble P via mechanism of organic acid production. High-performance liquid chromatography (HPLC) study showed that isolate CKMV1 produced mainly gluconic (1.34%) and oxalic acids. However, genetic evidences for nitrogen fixation and phosphate solubilization by organic acid production have been reported first time for A. aneurinilyticus strain CKMV1. A unique combination of glucose dehydrogenase (gdh) gene and pyrroloquinoline quinone synthase (pqq) gene, a cofactor of gdh involved in phosphate solubilization has been elucidated. Nitrogenase (nif H) gene for nitrogen fixation was reported from A. aneurinilyticus. It was notable that isolate CKMV1 exhibited highest antifungal against Sclerotium rolfsii (93.58%) followed by Fusarium oxysporum (64.3%), Dematophora necatrix (52.71%), Rhizoctonia solani (91.58%), Alternaria sp. (71.08%) and Phytophthora sp. (71.37%). Remarkable increase was observed in seed germination (27.07%), shoot length (42.33%), root length (52.6%), shoot dry weight (62.01%) and root dry weight (45.7%) along with NPK (0.74, 0.36, 1.82%) content of tomato under net house condition. Isolate CKMV1 possessed traits related to plant growth promotion, therefore, could be a potential candidate for the development of biofertiliser or biocontrol agent and this is the first study to include the Aneurinibacillus as PGPR.


Subject(s)
Plant Growth Regulators/metabolism , Valerian/microbiology , Calcium Phosphates/metabolism , Solanum lycopersicum/growth & development , Bacillales/isolation & purification , Nitrogen Fixation , Soil Microbiology , Chromatography, High Pressure Liquid , Solanum lycopersicum/microbiology , Plant Roots/microbiology , Biomass , Bacillales/metabolism , Rhizosphere , Fungi/growth & development , Antibiosis
13.
Braz. j. microbiol ; 47(3): 563-570, July-Sept. 2016. tab, graf
Article in English | LILACS | ID: lil-788954

ABSTRACT

ABSTRACT Background: Since 1960s, the organophosphate pesticide chlorpyrifos has been widely used for the purpose of pest control. However, given its persistence and toxicity towards life forms, the elimination of chlorpyrifos from contaminated sites has become an urgent issue. For this process bioremediation is the method of choice. Results: Two bacterial strains, JCp4 and FCp1, exhibiting chlorpyrifos-degradation potential were isolated from pesticide contaminated agricultural fields. These isolates were able to degrade 84.4% and 78.6% of the initial concentration of chlorpyrifos (100 mg L-1) within a period of only 10 days. Based on 16S rRNA sequence analysis, these strains were identified as Achromobacter xylosoxidans (JCp4) and Ochrobactrum sp. (FCp1). These strains exhibited the ability to degrade chlorpyrifos in sterilized as well as non-sterilized soils, and were able to degrade 93-100% of the input concentration (200 mg kg-1) within 42 days. The rate of degradation in inoculated soils ranged from 4.40 to 4.76 mg-1 kg-1 d-1 with rate constants varying between 0.047 and 0.069 d-1. These strains also displayed substantial plant growth promoting traits such as phosphate solubilization, indole acetic acid production and ammonia production both in absence as well as in the presence of chlorpyrifos. However, presence of chlorpyrifos (100 and 200 mg L-1) was found to have a negative effect on indole acetic acid production and phosphate solubilization with percentage reduction values ranging between 2.65-10.6% and 4.5-17.6%, respectively. Plant growth experiment demonstrated that chlorpyrifos has a negative effect on plant growth and causes a decrease in parameters such as percentage germination, plant height and biomass. Inoculation of soil with chlorpyrifos-degrading strains was found to enhance plant growth significantly in terms of plant length and weight. Moreover, it was noted that these strains degraded chlorpyrifos at an increased rate (5.69 mg-1 kg-1 d-1) in planted soil. Conclusion The results of this study clearly demonstrate that the chlorpyrifos-degrading strains have the potential to develop into promising candidates for raising the productivity of crops in pesticide contaminated soils.


Subject(s)
Plants/microbiology , Bacteria/classification , Bacteria/metabolism , Plant Physiological Phenomena , Bacterial Physiological Phenomena , Chlorpyrifos/metabolism , Phenotype , Plant Growth Regulators/biosynthesis , Soil Microbiology , Bacteria/growth & development , Biodegradation, Environmental
14.
Braz. j. microbiol ; 47(3): 542-550, July-Sept. 2016. tab, graf
Article in English | LILACS | ID: lil-788956

ABSTRACT

ABSTRACT The main objective of the present study was to isolate phytohormone-producing, phosphate-solubilizing strains of Azospirillum from wheat to be used as inoculants for plant growth promotion. Five Azospirillum strains were isolated from the rhizosphere of field-grown wheat (Triticum aestivum L.), and it was confirmed by BOX-polymerase chain reaction (PCR) that the isolates were different and not re-isolates of the same strain. Sequence analysis of the PCR-amplified 16S rRNA gene indicated that four isolates showed maximum similarity to Azospirillum brasilense and one isolate showed maximum similarity to Azospirillum zeae. This is the first report indicating the presence of an A. zeae like isolate in the wheat rhizosphere in Pakistan. The bacterial isolates were characterized for their plant growth-promoting traits, phosphate solubilization, and indole-3-acetic acid (IAA) production. None of the isolates showed phosphate solubilization activity in the commonly used Pikovskaya medium. However, all strains (except AzoK4) exhibited ability to solubilize tricalcium phosphate (TCP) in modified Pikovskaya medium in which sucrose was replaced by Na-malate, as well as in TCP-supplemented Luria-Bertani (LB) medium. Organic acids, such as acetic, citric, lactic, malic, and succinic acids, were detected in culture supernatants of the tested Azospirillum strains. All strains exhibited ability to produce IAA in the growth medium, except Azospirillum sp. AzoK1. Among the strains tested, the maximum IAA production (30.49 ± 1.04 mg L-1) and phosphate solubilization (105.50 ± 4.93 mg L-1) were shown by a pure culture of Azospirillum sp. AzoK2. In pot experiments, single-strain inocula of Azospirillum sp. AzoK1 and AzoK2 improved wheat plant growth.


Subject(s)
Plant Growth Regulators/biosynthesis , Triticum/microbiology , Azospirillum/classification , Azospirillum/physiology , Rhizosphere , Pakistan , Phylogeny , Sequence Analysis, DNA , Phosphorus Acids/metabolism , Genes, Bacterial , Nitrogen/metabolism
15.
Biota Neotrop. (Online, Ed. ingl.) ; 15(2): e20140105, Apr.-June 2015. tab
Article in English | LILACS | ID: biblio-951033

ABSTRACT

The occurrence of associations between bacteria and plant roots may be beneficial, neutral or detrimental. Plant growth promoting (PGP) bacteria form a heterogeneous group of beneficial microorganisms that can be found in the rhizosphere, the root surfaces or in association with host plant. The aim of this study was to isolate and characterize PGP bacteria associated to barley plants (Hordeum vulgare L.) aiming a future application as agricultural inoculant. One hundred and sixty bacterial strains were isolated from roots or rhizospheric soil of barley based on their growth in nitrogen-free selective media. They were evaluated for their ability to produce indolic compounds (ICs) and siderophores, and to solubilize tricalcium phosphate inin vitro assays. Most of them (74%) were able to synthesize ICs in the presence of the precursor L-tryptophan, while 57% of the isolates produced siderophores in Fe-limited liquid medium, and 17% were able to solubilize tricalcium phosphate. Thirty-two isolates possessing different PGP characteristics were identified by partial sequencing of their 16S rRNA gene. Strains belonging to Cedecea andMicrobacterium genera promoted the growth of barley plants in insoluble phosphate conditions, indicating that these bacteria could be used as bioinoculants contributing to decrease the amount of fertilizers applied in barley crops.


A ocorrência de associações entre bactérias e raízes de plantas pode ser benéfica, neutra ou prejudicial. Bactérias promotoras de crescimento vegetal (BPCV) formam um grupo heterogêneo de micro-organismos benéficos que pode ser encontrado na rizosfera, superfícies de raízes ou em associação com plantas hospedeiras. O objetivo deste estudo foi isolar e caracterizar bactérias promotoras do crescimento vegetal (PCV) associadas a plantas de cevada (Hordeum vulgare L.), visando uma futura aplicação como inoculante agrícola. Cento e sessenta linhagens bacterianas foram isoladas a partir de raízes ou solo rizosférico de cevada com base na sua multiplicação em meios seletivos sem nitrogênio. Todos os isolados foram avaliados quanto è sua capacidade de produzir compostos indólicos (CIs), sideróforos e solubilizar fosfato tricálcio, em ensaios in vitro. A maioria dos isolados (74%) foi capaz de sintetizar CIs na presença do precursor L-triptofano, enquanto que 57% produziram sideróforos em meio líquido com deficiência de Fe e 17% foram capazes de solubilizar fosfato tricálcio. Trinta e dois isolados que apresentaram diferentes características PCV foram identificados pelo sequenciamento parcial do gene 16S rRNA. Linhagens pertencentes aos gêneros Cedecea eMicrobacterium promoveram o crescimento de plantas de cevada em condições de fosfato insolúvel, indicando que estas bactérias podem ser utilizadas como inoculantes, contribuindo para a redução da quantidade de fertilizantes aplicados no cultivo da cevada.

16.
Article in English | IMSEAR | ID: sea-168491

ABSTRACT

Mineral phosphate solubilization activities by Allochromatium sp. GSKRLMBKU-01 on dicalcium and tricalcium phosphate was investigated. The biomass, di- and tricalcium phosphate solubilization increased with the progress of incubation period upto 8th day and decreased with further incremental incubation period. The highest solubility of dicalcium phosphate (558.0 ± 9.2 μg P/ml) and tricalcium phosphate (568.0 ± 8.0 μg P/ml) was recorded on 8th day of incubation period. The maximum optical density of biomass of the bacterium on dicalcium and tricalcium phosphate was 1.389 ± 0.110 and 1.206 ± 0.108 respectively on 8th day of incubation period. A positive correlation coefficient (r) was recorded between growth, dicalcium phosphate(r=0.965) and tricalcium phosphate (r=0.786) solubilization.

17.
Rev. colomb. biotecnol ; 17(1): 111-121, ene.-jun. 2015. ilus, tab
Article in Spanish | LILACS | ID: lil-751195

ABSTRACT

Quince aislamientos de actinobacterias solubilizadoras de fósforo obtenidas a partir de suelos de los andes orientales colombianos fueron identificadas por sus características morfológicas y por la secuenciación del gen 16S ADNr. El análisis BLASTN de las 15 secuencias obtenidas mostró que los aislamientos pertenecían al género Streptomyces. Paralelamente, los aislamientos fueron sometidos a la detección de ácidos orgánicos, durante el proceso de solubilización de fósforo con la presencia mayoritaria de los ácidos oxálico, cítrico y glucónico. Dentro de las cepas evaluadas Streptomyces sp. T3A fue seleccionada para ser evaluada bajo diferentes fuentes de fósforo inorgánico debido a los resultados de evaluaciones cualitativas y cuantitativas realizadas previamente, en las cuales mostró una actividad solubilizadora de fósforo significativamente alta. Los resultados evidenciaron la capacidad de ésta actinobacteria para solubilizar diferentes fuentes de fosfatos insolubles con valores de 122 mgP·L-1 paraCa3(PO4)2, 14 mgP·L-1 para AlPO4 y 19,6 mgP·L-1 para roca fosfórica. También los ensayos revelaron que la actividad se mantiene en un rango de pH de 5 a 8 con las mismas fuentes de fosfatos evaluadas. Los resultados presentados contribuyen al avance en la caracterización de estas bacterias como promotoras de crecimiento vegetal con el fin de presentarlos como un recurso clave a nivel de biotecnología agrícola.


Fifteen isolates of Eastern Cordillera of the Colombian Andes were identified by morphological characteristics and 16S rDNA gene sequence. The BLAST analysis of 15 sequences shows that isolates belong to Streptomyes. Also we detected the organic acids in the solubilization process mainly oxalic acid, citric acid and gluconic acid. Streptomyces sp. (T3A) was selected in preliminary qualitative and quantitative assays by the high phosphorus solubilizing activity; in this work we evaluate this strain with different forms of inorganic phosphate. The results evidenced the capacity of this actinobacteria to solubilize phosphorous showed 122 mgP•L-1 Ca3(PO4)2, 14 mgP•L-1 AlPO4 and 19,6 mgP•L-1 for rock phosphate. Also the assays revealed that the activity was maintained between a pH range of 5 to 8 with the same sources of insoluble phosphates evaluated. These results contribute to characterize these strains as plant growth promotion bacteria and as key source in agricultural biotech.

18.
Article in English | IMSEAR | ID: sea-163241

ABSTRACT

Aims: The present work is aimed to find out the enzymatic activities and phosphate solubilizing efficiency of indigenous rhizobia confined to rice fallows. Study Design: In this experiment we maintained random block design (RBD). Place and Duration of Study: This work was carried out in the Department of Botany and Microbiology, Acharya Nagarjuna University between October 2012 and December 2013. Methodology: In this study, we have isolated 19 Rhizobium strains collected from the healthy root nodules of Vigna mungo cultivated in rice fallows on yeast extract mannitol agar (YEMA) medium. The strains were confirmed as Rhizobia by using Gram staining, growth on YEMA with congo red, growth in Hofer’s alkaline broth, growth on glucose peptone agar, acid production, ketolactose test and nodulating ability was tested on homologous hosts by plant infection tests. Phosphate solubilization ability of the isolated Rhizobium strains were carried out Pikovskaya’s agar medium. Results: Eight out of 19 strains tested for phosphate solubilizing ability on Pikovskaya’s agar medium containing tri calcium phosphate (TCP) as insoluble phosphate source showed zone of TCP solubilization. The strain VM-2 exhibited maximum solubilization after 48h of incubation, while least activity was found with VM-11. Effect of different carbon and nitrogen sources on phosphate solubilizing ability of Rhizobial strains was tested and maximum phosphate solubilization (799μg/ml) by VM-2 was observed when glucose and ammonium sulphate were used as carbon and nitrogen sources. Conclusion: In this study it is concluded that along with symbiotic nitrogen fixtation, some Rhizobium species were found to be involved in phosphate solubilization and this ability of phosphate solubilization by the Rhizobium strains can be exploited as PGPR.

19.
Br Biotechnol J ; 2014 Sept; 4(9): 946-956
Article in English | IMSEAR | ID: sea-162502

ABSTRACT

Aims: Through the National Botanical Research Institute's phosphate growth medium (NBRIP) and 16S rDNA sequence analysis were used to isolate and identify the bacterial groups that actively solubilized phosphates in vitro from rhizosphere soil for three cultvited leguminous in agricultural soils from Meknes region. Study Design: Rhizosphere soil samples for three cultivated legumes in different sites from Meknes region were collected for the study. Place and Duration of Study: Department of biology (Soil & Environment Microbiology Unit) Faculty of Sciences, Moulay Ismail University, Meknes, Morocco; between January and July 2014. Methodology: Out of several hundred colonies that grew on NBRIP medium eight best isolates were selected based on the solubilization of insoluble phosphates in solid medium with solubilizing index (SI) and Phosphate concentration solubilized in liquid medium; The bacterial isolates were identified based on their phenotypic and 16S rDNA genes sequencing. Results: P solubilization index of these isolates ranged from 2.51 to 6. Drop in pH of the medium ranged from 6.8 to 3.2 with the continuous growth of these isolates for seven days. P-solubilized ranged from 50.95 to 113.11 mg L-1. They were clustered under the genera Enterobacter, Pantoea, Rhizobium, Klebsiella, Rahnella, Bacillus and Burkholderia. Conclusion: This research extends the knowledge on Phosphate solubilizing bacteria in the rhizosphere of some cultivated legumes from Meknes region and development of environmentally friendly bio-Phosphate fertilizers.

20.
Anon.
NOVA publ. cient ; 12(22): 165-178, jul.-dic. 2014. ilus, tab
Article in Spanish | LILACS, COLNAL | ID: lil-745094

ABSTRACT

Identificar la actividad solubilizadora de fosfato de cepas del género Bacillus, como alternativa al mejoramiento del suelo para la producción agrícola.Materiales y métodos: Se utilizaron 11 cepas del género Bacillus recolectadas de rizósferas de plantas y de chimeneas de asaderos de pollo para el estudio y 2 como control negativo, conservadas a -70°C y reactivadas para la identificación de la actividad solubilizadora de fosfato. Resultados: La solubilización de fosfato se evidenció en las 11 cepas del estudio. Los índices de solubilidad fueron diferentes para cada cepa en estudio...


Identify phosphate solubilizing activity of strains of the genus Bacillus, as an alternative to improving soil for agricultural production. Materials and methods: For the study, 11 strains of the genus Bacillus were collected from rhizosphere of plants and fireplaces of broiler chicken producers. Two strains were used as negative control, and stored at -70C prior to reactivation for identifying phosphate solubilizing activity. Results: 11 strains showed Phosphate solubilizing abilities. Each strain studied exhibited different solubility rates...


Subject(s)
Humans , Bacillus , Fertilizers , Crop Production , Antazoline
SELECTION OF CITATIONS
SEARCH DETAIL