Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 433
Filter
1.
Chinese journal of integrative medicine ; (12): 251-259, 2024.
Article in English | WPRIM | ID: wpr-1010332

ABSTRACT

OBJECTIVE@#To explore the mechanism of electroacupuncture (EA) in promoting recovery of the facial function with the involvement of autophagy, glial cell line-derived neurotrophic factor (GDNF), and phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway.@*METHODS@#Seventy-two male Sprague-Dawley rats were randomly allocated into the control, sham-operated, facial nerve injury (FNI), EA, EA+3-methyladenine (3-MA), and EA+GDNF antagonist groups using a random number table, with 12 rats in each group. An FNI rat model was established with facial nerve crushing method. EA intervention was conducted at Dicang (ST 4), Jiache (ST 6), Yifeng (SJ 17), and Hegu (LI 4) acupoints for 2 weeks. The Simone's 10-Point Scale was utilized to monitor the recovery of facial function. The histopathological evaluation of facial nerves was performed using hematoxylin-eosin (HE) staining. The levels of Beclin-1, light chain 3 (LC3), and P62 were detected by immunohistochemistry (IHC), immunofluorescence, and reverse transcription-polymerase chain reaction, respectively. Additionally, IHC was also used to detect the levels of GDNF, Rai, PI3K, and mTOR.@*RESULTS@#The facial functional scores were significantly increased in the EA group than the FNI group (P<0.05 or P<0.01). HE staining showed nerve axons and myelin sheaths, which were destroyed immediately after the injury, were recovered with EA treatment. The expressions of Beclin-1 and LC3 were significantly elevated and the expression of P62 was markedly reduced in FNI rats (P<0.01); however, EA treatment reversed these abnormal changes (P<0.01). Meanwhile, EA stimulation significantly increased the levels of GDNF, Rai, PI3K, and mTOR (P<0.01). After exogenous administration with autophagy inhibitor 3-MA or GDNF antagonist, the repair effect of EA on facial function was attenuated (P<0.05 or P<0.01).@*CONCLUSIONS@#EA could promote the recovery of facial function and repair the facial nerve damages in a rat model of FNI. EA may exert this neuroreparative effect through mediating the release of GDNF, activating the PI3K/mTOR signaling pathway, and further regulating the autophagy of facial nerves.


Subject(s)
Rats , Male , Animals , Rats, Sprague-Dawley , Electroacupuncture , Phosphatidylinositol 3-Kinase/metabolism , Facial Nerve Injuries/therapy , Phosphatidylinositol 3-Kinases/metabolism , Beclin-1 , Glial Cell Line-Derived Neurotrophic Factor , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Autophagy , Mammals/metabolism
2.
Chinese journal of integrative medicine ; (12): 213-221, 2024.
Article in English | WPRIM | ID: wpr-1010320

ABSTRACT

OBJECTIVE@#To investigate the effect and possible mechanism of hydroxysafflor yellow A (HSYA) on human immortalized keratinocyte cell proliferation and migration.@*METHODS@#HaCaT cells were treated with HSYA. Cell proliferation was detected by the cell counting kit-8 assay, and cell migration was measured using wound healing assay and Transwell migration assay. The mRNA and protein expression levels of heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF), EGF receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF-1α) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Circ_0084443-overexpressing HaCaT cells and empty plasmid HaCaT cells were constructed using the lentiviral stable transfection and treated with HSYA. The expression of circ_0084443 was detected by qRT-PCR.@*RESULTS@#HSYA (800 µmol/L) significantly promoted HaCaT cell proliferation and migration (P<0.05 or P<0.01). It also increased the mRNA and protein expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and increased the phosphorylation levels of PI3K and AKT (P<0.05 or P<0.01). Furthermore, HSYA promoted HaCaT cell proliferation and migration via the HBEGF/EGFR and PI3K/AKT/mTOR signaling pathways (P<0.01). Circ_0084443 attenuated the mRNA expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α (P<0.05). HSYA inhibited the circ_0084443 expression, further antagonized the inhibition of circ_0084443 on HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and promoted the proliferation of circ_0084443-overexpressing HaCaT cells (P<0.05 or P<0.01). However, HSYA could not influence the inhibitory effect of circ_0084443 on HaCaT cell migration (P>0.05).@*CONCLUSION@#HSYA played an accelerative role in HaCaT cell proliferation and migration, which may be attributable to activating HBEGF/EGFR and PI3K/AKT signaling pathways, and had a particular inhibitory effect on the keratinocyte negative regulator circ_0084443.


Subject(s)
Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases/metabolism , ErbB Receptors/genetics , TOR Serine-Threonine Kinases/metabolism , Cell Proliferation , RNA, Messenger/genetics , Cell Movement , Cell Line, Tumor , Chalcone/analogs & derivatives , Quinones
3.
Chinese Pharmacological Bulletin ; (12): 90-98, 2024.
Article in Chinese | WPRIM | ID: wpr-1013596

ABSTRACT

Aim To investigate the effect of ellagic acid (EA) on cognitive function in APP/PS 1 double- transgenic mice, and to explore the regulatory mechanism of ellagic acid on the level of oxidative stress in the hippocampus of double-transgenic mice based on the phosphatidylinositol 3-kinase/protein kinase B/glycogen synthase kinase-3 (PI3K/AKT/GSK-3 β) signaling pathway. Methods Thirty-two SPF-grade 6-month-old APP/PS 1 double transgenic mice were randomly divided into four groups, namely, APP/PS 1 group, APP/PS1 + EA group, APP/PS1 + LY294002 group, APP/PS 1 + EA + LY294002 group, with eight mice in each group, and eight SPF-grade C57BL/6J wild type mice ( Wild type) were selected as the blank control group. The APP/PS 1 + EA group was given 50 mg · kg

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 48-55, 2024.
Article in Chinese | WPRIM | ID: wpr-1013339

ABSTRACT

ObjectiveExploring the role of microRNA126 (miRNA126) in chronic kidney disease combined with atherosclerosis (CKD AS) by regulating the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway and the mechanism of Shenshuai Xiezhuo decoction in the intervention of CKD AS rats with 5/6 nephrectomy combined with high-fat feeding. MethodA total of 60 SD rats were randomly divided into sham operation group, model group, losartan group, and low, medium, and high dose groups of Shenshuai Xiezhuo decoction. The CKD AS rat model was established by 5/6 nephrectomy combined with high-fat feeding for 10 weeks. The low, medium, and high dose groups (6.0, 12.0, 24.0 g·kg-1·d-1) of Shenshuai Xiezhuo decoction and the losartan group (20 mg·kg-1·d-1) were gavaged, and the corresponding intervention was carried out for eight weeks. Then, the rats were killed, and samples were collected for corresponding detection. Fully automated biochemical analyzers were used to detect kidney function and blood lipids in rats: blood creatinine (SCr), blood urea nitrogen (BUN), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) levels. Hematoxylin-eosin (HE) and Masson staining of aortic tissue and pathological observation under a light microscope were carried out, and autophagosomes and autophagy lysosomes were observed by transmission electron microscopy. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to determine the mRNA levels of miRNA126, PI3K, Akt, and mTOR in rats, and Western blot was used to determine the protein expression levels of phosphorylated (p)-PI3K, PI3K, p-Akt, Akt, p -mTOR, mTOR, benzyl chloride 1 (Beclin-1), and microtubule-associated protein light chain 3Ⅱ/Ⅰ (LC3Ⅱ/LC3Ⅰ). ResultCompared with the sham operation group, the serum SCr, BUN, TC, TG, and LDL-C in the model group were significantly increased (P<0.01). Compared with the model group, the SCr, BUN, TC, TG, and LDL-C were decreased in the losartan group and low, medium, and high dose groups of Shenshuai Xiezhuo decoction (P<0.05). Compared with the sham operation group, thickening plaques, infiltration of mononuclear macrophages, a small number of foam cells, disordered arrangement of smooth muscle fibers in the tunica media, and increased collagen fibers were observed in the model group, and the lesions in the losartan group and Shenshuai Xiezhuo decoction groups were alleviated compared with those in the model group. Compared with the model group, the number of autophagosomes and autophagy lysosomes increased in the medium and high dose groups of Shenshuai Xiezhuo decoction. Compared with the sham operation group, the expression of miRNA126 in the aortic tissue of the model group was significantly decreased (P<0.01), and the mRNA expressions of PI3K, Akt, and mTOR were significantly increased (P<0.01). Compared with the model group, the expression of miRNA126 in the aortic tissue of rats in high, medium, and low dose groups of Shenshuai Xiezhuo decoction and losartan group was significantly increased (P<0.01), while the mRNA expressions of PI3K, Akt, and mTOR were significantly decreased (P<0.01). Compared with the sham operation group, the protein expressions of p-PI3K, PI3K, p-Akt, Akt, p-mTOR, and mTOR in the model group were significantly increased (P<0.01), while the protein levels of Beclin-1, LC3Ⅰ, and LC3Ⅱ were significantly decreased (P<0.01). Compared with the model group, the protein expressions of p-PI3K, PI3K, p-Akt, Akt, p-mTOR, and mTOR in the losartan group and low, medium, and high dose groups of Shenshuai Xiezhuo decoction were decreased (P<0.05), while the protein levels of Beclin-1 and LC3Ⅱ/LC3Ⅰ were increased (P<0.05). ConclusionThe expression of miRNA126 is decreased in the aortic tissue of CKD AS rats, and the PI3K/Akt/mTOR pathway is activated to inhibit autophagy flux. Shenshuai Xiezhuo decoction regulates the PI3K/Akt/mTOR signaling pathway through miRNA126, restores the autophagy of aortic endothelial cells, protects the damage of CKD vessels, reduces the formation of As plaques, and slows the development of cardiovascular complications.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 280-289, 2024.
Article in Chinese | WPRIM | ID: wpr-1012718

ABSTRACT

As one of the most difficult-to-cure neuropsychiatric disorders in clinical practice, schizophrenia is mainly manifested by behavioral abnormalities and multidimensional cognitive dysfunction, and the recurrence rate and disability rate of the disease are increasing year by year, which seriously affects patients' social functioning and quality of life, and even threatens the physical and mental health of the surrounding population. At present, the treatment of schizophrenia is mainly based on antipsychotic drugs combined with psychotherapeutic techniques, which have limited long-term therapeutic effects and a high relapse rate. Traditional Chinese medicine (TCM) boasts the advantages of multi-targets, multi-pathways, multi-links, and multi-levels, and plays a crucial role in the prevention and treatment of schizophrenia and its prognosis. Phosphatidylinositol 3-kinase (PI3K) is widely present in cells and is involved in the regulation of protein synthesis and apoptosis, and the different isoforms of protein kinase B (Akt) are of great significance in cell growth, oxidative stress, neuronal development and other processes. In recent years, a large number of studies have found that the PI3K/Akt signaling pathway is closely related to schizophrenia. Through regulating the PI3K/Akt signaling pathway, TCM monomers and TCM compounds mainly affect key signaling molecules such as mammalian target of rapamycin (mTOR), glycogen synthase kinase (GSK), glucose transporter (GLUT) for glucose uptake and transport, and nuclear factor E2-associated factor 2 (Nrf2), which organize the intracellular network of centers and regulate the formation and plasticity of neuronal synapse, and they play an important role in mitigating schizophrenia by regulating the processes of cell proliferation, migration and apoptosis of neurons, and has the advantages of multi-targets, all-encompassing and low toxicity. This article analyzes and explains the mechanism of TCM intervention in the PI3K/Akt signaling pathway against schizophrenia, in order to provide a theoretical basis and reference for the prevention and treatment of schizophrenia by TCM.

6.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 66-73, 2024.
Article in Chinese | WPRIM | ID: wpr-1012694

ABSTRACT

ObjectiveTo explore the therapeutic mechanism of Faeces Bombycis on diabetic gastroparesis (DGP) rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian rapamycin target protein (PI3K/Akt/mTOR) signaling pathway. MethodDGP rat model was prepared by random selection of 15 out of 105 rats as blank group. The rats successfully constructed were randomly divided into model group, high-,medium- and low- dose groups (3.2, 1.6, 0.8 g·kg-1) and moxapride group (1.5 mg·kg-1), with 12 rats in each group, and were given gavage for 4 weeks. The gastric emptying rate and random blood glucose were measured. The morphological changes of gastric antrum were observed by hematoxylin-eosin (HE) staining, and the expression of the c-Kit gene was analyzed by immunohistochemistry. The apoptosis of Cajal interstitial cells was observed by in situ end labeling (TUNEL) staining, and the protein expressions of PI3K, phosphorylation(p)-PI3K, Akt, p-Akt, mTOR, and p-mTOR were detected by Western blot. ResultCompared with the blank group, the gastric emptying rate of the model group decreased significantly (P<0.01), and the glandular structure of the gastric antrum was destroyed. The expression of c-Kit decreased (P<0.01), and the apoptosis of Cajal interstitial cells (ICC) increased. Compared with the model group, the gastric emptying rate in the high, middle, and low-dose groups of Faeces Bombycis extract and mosapride group increased significantly (P<0.01). The glandular structure of the gastric antrum became closer, and the apoptosis of ICC decreased. The expression of c-Kit in the high dose group of Faeces Bombycis extract increased significantly. After Western blot testing, compared with the blank group, the protein expression of p-Akt/Akt, p-PI3K/PI3K, and p-mTOR/mTOR in the model group increased. Compared with the model group, the protein expression of p-Akt/Akt in the high dose group of Faeces Bombycis extract decreased (P<0.01), and the protein expression of p-PI3K/PI3K decreased in the middle and low dose groups of Faeces Bombycis extract and mosapride group decreased (P<0.05, P<0.01). The protein expression of p-mTOR/mTOR decreased in the low dose group of Faeces Bombycis extract (P<0.05). In terms of random blood glucose, compared with the blank group, the random blood glucose in the model group increased significantly (P<0.01), and compared with the model group, the random blood glucose in the high and middle dose groups of Faeces Bombycis extract decreased significantly (P<0.05). Compared with mosapride group, the protein expression of p-Akt/Akt decreased in the high dose group of Faeces Bombycis extract (P<0.05), and the protein expression of p-PI3K/PI3K increased in the high, middle, and low dose groups of Faeces Bombycis extract (P<0.05, P<0.01). ConclusionFaeces Bombycis extract can increase gastric emptying rate, reduce ICC apoptosis, and lower random blood glucose in DGP rats. The high dose group of Faeces Bombycis extract has a significant effect on inhibiting ICC apoptosis, and its mechanism may be related to the regulation of the PI3K/Akt/mTOR signaling pathway.

7.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 281-289, 2024.
Article in Chinese | WPRIM | ID: wpr-1011469

ABSTRACT

Cognitive impairment refers to the abnormality of the hippocampus, cortex and other parts of the brain, which is manifested by the decline of cognitive abilities such as learning, memory and attention. With the increase in people's work pressure and bad living habits, the incidence of cognitive impairment is getting higher and higher, which seriously affects people's normal life. However, there are adverse reactions such as gastrointestinal reactions and extrapyramidal reactions in Western drug treatment for cognitive impairment. Therefore, the development of a drug with relatively minimal adverse reactions is of great significance. Traditional Chinese medicine (TCM) has the characteristics of "multi-component, multi-pathway and multi-target", and the incidence of adverse reactions is relatively low. Studies have shown that the pathogenesis of cognitive impairment is closely related to oxidative stress, inflammation, apoptosis, autophagy and other processes of neurons in the cerebral cortex and hippocampus. Phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) signal pathway plays an important role in the transmission of intracellular and intracellular signals, and in the regulation of cellular inflammation, apoptosis, autophagy, etc. TCM monomers, TCM extracts, and TCM compounds exert anti-inflammatory, antioxidant, anti-apoptotic and autophagy regulation effects by regulating the PI3K/Akt signaling pathway to improve cognitive impairment. This review first summarized the composition and regulatory process of the PI3K/Akt signaling pathway, and then discussed the research progress on the improvement of cognitive impairment through the improvement of oxidative stress, inflammation, apoptosis and autophagy of neurons. Finally, the recent research status of the regulation of this signaling pathway by TCM extracts, TCM monomers and TCM compounds to improve cognitive impairment was summarized. This study provides a theoretical basis for the future study of new TCM related to cognitive impairment.

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 253-261, 2024.
Article in Chinese | WPRIM | ID: wpr-1006578

ABSTRACT

Cerebral ischemia/reperfusion injury (CIRI) is a complex cascade reaction process in which the blood flow and oxygen supply of brain tissue in the infarcted area recover after cerebral ischemia, resulting in secondary injury of ischemic brain tissue. At present, thrombolysis as soon as possible and restoration of cerebral blood supply are still the only strategies for the treatment of stroke, but a considerable number of patients' symptoms will be more serious after reperfusion, making patients face adverse outcomes such as neurological function injury and even death and seriously affecting the quality of life and safety of patients. Therefore, an in-depth exploration of the mechanism and treatment strategy of CIRI has important clinical significance. The phosphatidylinositol 3- kinase (PI3K)/protein kinase B (Akt) signaling pathway is one of the classic anti-apoptosis/reproductive-promoting signal transduction pathways, which is responsible for cell proliferation, growth, and differentiation. It is the key cascade signaling pathway of CIRI, located at the core site in many mechanisms such as mitochondrial disorder, apoptosis, autophagy, oxidative stress, and inflammation. It is closely related to the occurrence and development of CIRI. Traditional Chinese medicine has been used in the clinical treatment of stroke and its complications for thousands of years, and the clinical effect of traditional Chinese medicine in the prevention and treatment of CIRI has been affirmed by a large number of research results in recent years. It is further clarified that the monomers, active components, and their compound prescriptions of traditional Chinese medicine can directly or indirectly regulate the PI3K/Akt signaling pathway by virtue of the biological advantages of multi-targets, multi-components, and multi-pathways and play an overall protective role in CIRI. By analyzing the related research progress of traditional Chinese medicine in China and abroad in recent years, the authors summarized the role and mechanism of regulating the PI3K/Akt signaling pathway in the prevention and treatment of CIRI, so as to provide further theoretical basis for the study of the mechanism of clinical prevention and treatment of CIRI.

9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 101-108, 2024.
Article in Chinese | WPRIM | ID: wpr-1006560

ABSTRACT

ObjectiveTo investigate the promotional effect of astragaloside on the repair and healing of chronic non-healing wounds and its mechanism. MethodA total of 60 male SD rats were constructed with full-layer skin defect wounds on the back, and except for the control (Con) group, the rest were constructed with non-healing wounds, which were then randomly divided into the sham-operation (sham) group, the low-dose astragaloside group, the high-dose astragaloside group, the astragaloside + LY294002 [phosphatidylinositol 3-kinase (PI3K) inhibitor] group, and the astragaloside + EX527 [silencing regulatory protein 1 (SIRT1) inhibitor] group. The percentage of wound area in each group was observed on the 2nd, 4th, 6th, and 8th days after wound molding. Collagen type Ⅰ alpha 1 (COL1A1) and alpha smooth muscle actin (α-SMA) expressions in the wound tissue were detected by immunofluorescence. Hematoxylin and eosin (HE) staining was performed to determine the pathological structure of the wound. The mRNA expression of inflammatory factors in the wound was measured by real-time polymerase chain reaction (Real-time PCR), and the expression of proteins related to the SIRT1/ nuclear factor (NF)-κB and PI3K/protein kinase B (Akt) signaling pathways in the wound was tested by Western blot. ResultCompared with the sham group, the percentage of postoperative wound area of rats in both low-dose and high-dose astragaloside groups gradually decreased with time, and the efficacy of the high-dose astragaloside group was better. Compared with the Con group, the fluorescence intensity of COL1A1 in wound tissue of the sham group decreased, while the expression of α-SMA increased. The epithelial tissue was severely damaged, with an increase in the thickness, and a large number of inflammatory cells were seen in the infiltration. The mRNA expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and inducible nitric oxide synthase (iNOS) was elevated. The protein expression of NF-κB p65, p-PI3K/PI3K, and p-Akt/Akt was elevated, while SIRT1 expression was decreased (P<0.05). Compared with the sham group, the fluorescence intensity of COL1A1 and α-SMA increased after astragaloside treatment. The number of epithelial cells increased, and the thickness decreased. The inflammatory cells decreased, and the amount of collagen increased. The mRNA expression of TNF-α, IL-1β, IL-6, and iNOS was decreased, and the protein expression of NF-κB p65, p-PI3K/PI3K, and p-Akt/Akt was decreased. SIRT1 was elevated, and the effect was better in the high-dose astragaloside group (P<0.05). Compared with the high-dose astragaloside group, inhibition of the PI3K/Akt and SIRT1 pathways by LY294002 and EX527 prevented the therapeutic efficacy of astragaloside on chronic non-healing wounds. ConclusionThe topical application of astragaloside significantly promotes the healing of chronic non-healing wounds in rats, and the mechanism may be related to the activation of the PI3K/Akt pathway and the SIRT1/NF-κB pathway.

10.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 178-187, 2024.
Article in Chinese | WPRIM | ID: wpr-1006519

ABSTRACT

Objective@#To explore the molecular mechanism of resveratrol (RES) in the treatment of oral squamous cell carcinoma (OSCC) through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.@*Methods@#The Swiss Target Prediction(http://www.swisstargetprediction.ch), SEA (http://sea.bkslab.org)database, and Pharm mapper database(http://lilab-ecust.cn) were used to retrieve RES-related targets, and the DISGENET (www.disgenet.org), OMIM (https://omim.org) and GeneCards (https://www.genecards.org) databases were used to screen OSCC disease targets. The intersection of drugs and disease targets was determined, and Cytoscape 3.7.2 software was used to construct a "drug-diseasetarget pathway" network. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was used to construct a target protein interaction network, and the DAVID database was used for enrichment analysis of key proteins. Finally, molecular docking validation of key proteins was performed using AutoDock and PyMOL. The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC; western blot was used to determine the effect of resveratrol at different concentrations (50, 100) μmol/L on the expression of Src tyrosine kinase (SRC), epidermal growth factor receptor (EGFR), estrogen receptor gene 1 (ESR1), and phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT) signaling pathway proteins in OSCC HSC-3 cells.@*Results@#A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified. A total of 116 potential common targets were obtained by intersecting drugs with disease targets. These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation, peptide tyrosine phosphorylation, transmembrane receptor protein tyrosine kinase signaling pathway, and positive regulation of RNA polymerase Ⅱ promoter transcription, and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects. The docking results of resveratrol with OSCC molecules indicated that key targets, such as EGFR, ESR1, and SRC, have good binding activity. The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC, EGFR, ESR1, p-PI3K, and p-AKT in HSC-3 cells in a dose-dependent manner.@*Conclusion@#RES can inhibit the expression of its targets EGFR, ESR1, SRC, p-PI3K, and p-AKT in OSCC cells.

11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 124-132, 2024.
Article in Chinese | WPRIM | ID: wpr-1003774

ABSTRACT

ObjectiveTo analyze the antidepressant quality markers(Q-Marker) of Bupleuri Radix(BP) before and after vinegar-processing by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS), multivariate statistical analysis and network pharmacology. MethodUPLC-Q-TOF-MS was used to analyze the chemical basis of raw and vinegar-processed products of BP, and principal component analysis(PCA) orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to identify the differential components in BP that changed significantly before and after vinegar-processing, which were regarded as candidate quality markers(Q-Marker). Then the disease-drug-component-target network related to antidepressant effect of BP was constructed by network pharmacology, and the antidepressant Q-Marker of raw and vinegar-processed products of BP was determined. Rats were randomly divided into blank group, model group, fluoxetine group(2.67 mg·kg-1) and total saponin group(0.72 mg·kg-1), except the blank group, rats in the other groups were subjected to chronic unpredictable mild stress(CUMS). Three weeks after the start of modeling, rats in each administration group were given the corresponding dose of drugs once a day for 4 weeks, and rats in the blank and model groups were given normal saline with dose of 10 mL·kg-1. At 1 day before modeling, 21 days and 28 days after administration, body mass weighing, sucrose preference test and open field test were performed on each group . After 28 days of administration, real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) was used to detect the mRNA expression levels of phosphatidylinositol 3-kinase(PI3K), protein kinase B(Akt), mammalian target of rapamycin(mTOR), glycogen synthase kinase-3β(GSK-3β), forkhead box transcription factor O3a(FoxO3a) and β-catenin in hippocampal tissues of rats in each group, while protein expression levels of PI3K, Akt, mTOR and FoxO3a in hippocampal tissues of rats in each group were detected by Western blot. ResultThere were 19 components in BP showed significant changes before and after vinegar-processing, and 9 components such as saikosaponin A, saikosaponin B1, saikosaponin B2, saikosaponin C and saikosaponin D were identified as potential Q-Marker through S-plot differential marker screening. Combined with the disease-drug-component-target network, saikosaponin A, saikosaponin B1, saikosaponin B2 and saikosaponin D were identified as antidepressant Q-Marker of raw and vinegar-processed products of BP. According to the results of pharmacodynamic tests, after 28 d of administration, compared with the blank group, the body mass, sucrose preference index and open field total score of rats in model group, fluoxetine group and total saponin group decreased significantly(P<0.01). Compared with the model group, the body mass, sucrose preference index and open field total score in total saponin group increased significantly(P<0.01). Compared with the blank group, mRNA expression levels of PI3K, Akt, mTOR and β-catenin in hippocampus of rats in the model group decreased significantly(P<0.05), while mRNA expression levels of GSK-3β and FoxO3a increased significantly(P<0.05). Compared with the model group, mRNA expression levels of PI3K, Akt, mTOR and β-catenin in hippocampus of rats in the total saponin group were increased significantly(P<0.05), while mRNA expression levels of GSK-3β and FoxO3a decreased significantly(P<0.05). Compared with the blank group, the protein expression levels of Akt and mTOR in hippocampus of the model group decreased significantly(P<0.01), while the protein expression levels of PI3K and FoxO3a increased significantly(P<0.01). Compared with the model group, the expression level of Akt in hippocampus of the total saponin group increased significantly(P<0.01), the mTOR expression level was increased but not statistically significant, while the protein expression levels of PI3K and FoxO3a decreased significantly(P<0.01). ConclusionThe chemical constituents of BP changed greatly after vinegar-processing, and the antidepressant Q-Marker of raw and vinegar-processed products of BP was determined by chemical basis, pharmacodynamics, network pharmacology and signaling pathway, which provided a reference for further research on quality control, pharmacodynamic substance basis and processing mechanism of BP.

12.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 10-17, 2024.
Article in Chinese | WPRIM | ID: wpr-1003761

ABSTRACT

ObjectiveTo observe the therapeutic effect of Qiwei Baizhusan(QWBZS) on diabetic encephalopathy(DE) rat model, and to explore the possible mechanism of QWBZS in the treatment of DE based on phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/glycogen synthase kinase-3β(GSK-3β) signaling pathway. MethodForty-eight SPF male Wistar rats were randomly divided into blank group(8 rats) and high-fat diet group(40 rats). After 12 weeks of feeding, rats in the high-fat diet group were intraperitoneally injected with 35 mg·kg-1 of 1% streptozotocin(STZ) for 2 consecutive days to construct a DE model, and rats in the blank group were injected with the same amount of sodium citrate buffer. After successful modeling, according to blood glucose and body weight, model rats were randomly divided into model group, low, medium and high dose groups of QWBZS(3.15, 6.3, 12.6 g·kg-1), combined western medicine group(metformin+rosiglitazone, 0.21 g·kg-1), with 6 rats in each group. The administration group was given the corresponding dose of drug by gavage, and the blank group and the model group were given an equal volume of 0.9% sodium chloride solution by gavage, 1 time/day for 6 weeks. Morris water maze was used to detect the spatial memory ability of DE rats. Fasting insulin (FINS) level was detected by enzyme-linked immunosorbent assay(ELISA) and insulin resistance index(HOMA-IR) was calculated. Hematoxylin-eosin(HE) staining was used to observe the morphological changes of hippocampus in rats, ELISA was used to detect the indexes of oxidative stress in hippocampal tissues, real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) was used to detect mRNA expression levels of PI3K, Akt, nuclear transcription factor-κB(NF-κB), tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) in hippocampus, and Western blot was used to detect the protein expression of PI3K, Akt, phosphorylated(p)-Akt, GSK-3β and p-GSK-3β in hippocampus of rats. ResultCompared with the blank group, FINS and HOMA-IR values of the model group were significantly increased(P<0.01), the path of finding the original position of the platform was significantly increased, and the escape latency was significantly prolonged(P<0.01), the morphology of neuronal cells in hippocampal tissues was disrupted, the levels of reactive oxygen species(ROS) and malondialdehyde(MDA) in hippocampus of rats were increased, and the activity of superoxide dismutase(SOD) was decreased(P<0.05, P<0.01), mRNA expression levels of PI3K and Akt were decreased(P<0.01), mRNA expression levels of NF-κB, TNF-α and IL-1β were increased(P<0.05, P<0.01), the protein expression levels of PI3K, p-Akt and p-GSK-3β were significantly decreased, and the protein expression of GSK-3β was significantly increased(P<0.01). Compared with the model group, the FINS and HOMA-IR values of the medium dose group of QWBZS and the combined western medicine group were significantly decreased(P<0.01), the path of finding the original position of the platform and the escape latency were significantly shortened(P<0.01), the hippocampal tissue structure of rats was gradually recovered, and the morphological damage of nerve cells was significantly improved, the contents of ROS and MDA in hippocampus of rats decreased and the level of SOD increased(P<0.01), the mRNA expression levels of PI3K and Akt were increased(P<0.01), and the mRNA expression levels of NF-κB, TNF-α and IL-1β were decreased (P<0.05, P<0.01), the protein expression levels of PI3K, p-Akt and p-GSK-3β were significantly increased(P<0.01), and the expression of GSK-3β was significantly decreased(P<0.01). ConclusionQWBZS can alleviate insulin resistance in DE rats, it may repair hippocampal neuronal damage and improve learning and cognitive ability of DE rats by activating PI3K/Akt/GSK-3β signaling pathway.

13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 118-126, 2024.
Article in Chinese | WPRIM | ID: wpr-1003415

ABSTRACT

ObjectiveTo observe the effect of earthworm protein on the expression of phosphatidylinositol 3-kinase/protein kinase B/nuclear factor E2-related factor 2 (PI3K/Akt/Nrf2) pathway in the aorta of spontaneously hypertensive rats (SHR) and explore mechanism of earthworm protein in treating hypertensive vascular endothelial dysfunction (VED). MethodTen 10-week-old Wistar Kyoto (WKY) rats and fifty SHR rats were selected for a week of adaptive feeding. WKY rats were selected as the normal group, and fifty SHR rats were randomized according to body weight into model, valsartan (8×10-3 g·kg-1·d-1), and high-, medium-, and low-dose (0.2, 0.1, 0.05 g·kg-1·d-1, respectively) earthworm protein groups. The normal and model groups were administrated with equal volume of double distilled water by gavage. During the drug intervention period, the general situations of rats in each group were observed and their blood pressure was monitored at specific time points every other week before and after administration. After 8 weeks of drug intervention, enzyme-linked immunosorbent assay was employed to measure the levels of angiotensin-Ⅱ (Ang-Ⅱ) and endothelin-1 (ET-1) in the serum of rats in each group. The corresponding kits were used to determine the levels of nitric oxide (NO), malondialdehyde (MDA), glutathione peroxidase (GPX), superoxide dismutase (SOD), and ferrous ion (Fe2+). Hematoxylin-eosin (HE) staining was employed to observe the changes in the intima of the aorta. Fluorescence quantitative polymerase chain reaction (Real-time PCR) was employed to measure the mRNA levels of PI3K, Akt, Nrf2, heme oxygenase-1 (HO-1), and glutathione peroxidase 4 (GPX4) in the aortic tissue. Western blotting was used to determine the protein levels of p-PI3K (Tyr467/199), PI3K, p-Akt (Ser473), Akt, Nrf2, HO-1, and GPX4 in the thoracic aorta. ResultCompared with the normal group, the model group had decreased body mass, increased irritability, severe endothelial damage, elevated blood pressure and serum levels of Ang-Ⅱ, ET1, MDA, and Fe2+ (P<0.01), lowered NO level (P<0.01), and down-regulated mRNA and protein levels of p-PI3K (Tyr467/199), PI3K, p-Akt (Ser473), Akt, Nrf2, HO-1, and GPX4 in the aortic tissue (P<0.01). Compared with the model group, drug intervention caused no significant change in the body mass, calmed the rats, alleviated the endothelial damage, lowered blood pressure and serum levels of Ang-Ⅱ, ET1, MDA, and Fe2+ (P<0.01), elevated the NO level (P<0.05), and up-regulated the mRNA and protein levels of p-PI3K (Tyr467/199), PI3K, p-Akt (Ser473), Akt, Nrf2, HO-1, and GPX4 (P<0.05). ConclusionThe earthworm protein can exert antihypertensive effects by ameliorating VED in SHR. Specifically, it may regulate the PI3K/Akt/Nrf2 signaling pathway to inhibit oxidative stress and ferroptosis.

14.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 99-109, 2024.
Article in Chinese | WPRIM | ID: wpr-1003413

ABSTRACT

ObjectiveTo investigate the effect of Tangzhi pills on the improvement of insulin resistance (IR) in the liver with type 2 diabetes (T2DM) by regulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway based on differential genes and its possible molecular mechanism. MethodT2DM rat models were prepared by high fat (HFD) diet combined with streptozotocin (STZ) intraperitoneal injection. The experiment was divided into blank group, model group, metformin hydrochloride group (0.18 g·kg-1), Tangzhi pills high (1.08 g·kg-1), medium (0.54 g·kg-1) and low (0.27 g·kg-1) dose groups. Rat serum, liver, and pancreatic tissue were collected, and the pathological tissue of the liver and pancreas was observed using hematoxylin-eosin (HE) staining. The fasting blood glucose level (FBG) was detected, and oral glucose tolerance (OGTT) tests were conducted. Enzyme-linked immunosorbent assay (ELISA) was used to detect fasting serum insulin (FINS) and glycated hemoglobin (GHb) levels in rats. IR homeostasis model index (HOMA-IR), β cellular homeostasis index (HOMA-β), and insulin sensitivity index (ISI) were calculated. Biochemical methods were used to determine the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL-C), and high-density lipoprotein (HDL-C) in rat serum. Transcriptomics obtained differentially expressed mRNA from liver tissue and enriched differentially expressed pathways. Real-time reverse transcriptase polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of cyclic adenylate responsive element binding protein 3-like protein 2 antibody (CREB3l2), B-lymphocyte tumor 2 (Bcl-2), Toll-like receptor 2 (TLR2), cyclin-dependent kinase inhibitor 1A (CDNK1A), and DNA damage induced transcription factor 4-like protein (DDIT4) in liver tissue. Western blot was used to detect the protein expression of phosphorylated phosphatidylinositol 3-kinase (p-PI3K), phosphorylated protein kinase B (p-Akt), glucose transporter 4 (GLUT4), insulin receptor (INSR), and insulin receptor substrate 2 (IRS2). ResultThe pharmacodynamic experiment results showed that compared with model group, Tangzhi pills groups repaired liver and pancreatic tissue to varying degrees, reduced blood sugar (P<0.01), and promoted a decrease in serum FINS, GHb, and HOMA-IR (P<0.05, P<0.01). In addition, HOMA-β and ISI increased (P<0.05, P<0.01). The levels of TC, TG, and LDL-C decreased (P<0.05, P<0.01), while the levels of HDL-C increased (P<0.05, P<0.01). The transcriptomics experimental results confirmed that the PI3K/Akt signaling pathway was significantly expressed in both the blank group and model group, as well as in the high-dose Tangzhi pills group and model group. CDNK1A, DDIT4, CREB3l2, Bcl-2, and TLR2 were significantly differentially expressed mRNA during TG intervention in T2DM. Compared with the model group, the protein expression of p-PI3K, p-Akt, GLUT4, INSR, and IRS2 increased in all Tangzhi pills groups (P<0.01). The mRNA expression of CREB3l2, Bcl-2, and TLR2 increased (P<0.01), while that of CDNK1A and DDIT4 decreased (P<0.01). ConclusionTangzhi pills may regulate the PI3K/Akt signaling pathway based on the differential mRNA expression of CREB3l2, Bcl-2, TLR2, CDNK1A, and DDIT4, thereby improving IR in the liver with T2DM.

15.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 130-139, 2024.
Article in Chinese | WPRIM | ID: wpr-999169

ABSTRACT

ObjectiveTo observe the effects of Hedysari Radix polysaccharide on the apoptosis of gastric sinus smooth muscle cells and explore the underlying mechanism via the insulin-like growth factor-1 (IGF-1)/phosphatidylinositol 3-kinase (PI3K)/serine-threonine kinase (Akt) pathway in the rat model of diabetic gastroparesis (DGP). MethodSixty-two Wistar male rats were randomized into a blank group (n=12) and a modelling group (n=50). The rat model of DGP was established by small-dose multiple intraperitoneal injections of streptozotocin combined with an irregular high-fat and high-sugar diet for 4 weeks. The modeled rats were randomized into model group, mosapride citrate (1.35 mg·kg-1), and high-, medium-, and low-dose (200, 100, and 50 mg·kg-1, respectively) Hedysari Radix polysaccharide groups. The rats were administrated with corresponding drugs by gavage, and those in the blank and model groups with equal volumes of pure water by gavage once a day for 8 consecutive weeks. The random blood glucose and body mass were measured every 2 weeks, and gastric emptying rate was calculated. Hematoxylin-eosin (HE) staining was used to observe the pathological changes of smooth muscle in gastric antrum, and terminal deoxynucleoitidyl transferase-mediated nick-end labeling (TUNEL) was employed to detect the apoptosis of smooth muscle cells in the gastric antrum. The expression of IGF-1, phosphorylated (p)-PI3K, and p-Akt in the smooth muscle of gastric sinus tissue was detected by immunohistochemistry. Western blot was employed to determine the protein levels of IGF-1, p-PI3K/PI3K, p-Akt/Akt, B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax) in the smooth muscle of the gastric antrum. ResultCompared with the blank group, the model group showed elevated random blood glucose at all time points (P<0.01), decreased body mass and gastric emptying rate (P<0.01), increased apoptotic index of smooth muscle cells in the gastric antrum (P<0.01), down-regulated protein levels of IGF-1, p-PI3K/PI3K, p-Akt/Akt, and Bcl-2, and up-regulated protein level of Bax (P<0.01). Compared with the model group, the 8 weeks of drug administration lowered the random blood glucose, increased the body mass and gastric emptying rate (P<0.05, P<0.01), decreased the apoptotic index of smooth muscle cells in the gastric antrum (P<0.05, P<0.01), up-regulated the protein levels of IGF-1, p-PI3K/PI3K, p-Akt/Akt, and Bcl-2, and down-regulated the protein level of Bax (P<0.05, P<0.01). Compared with the mosapride citrate group,the administration of low-dose Hedysari Radix polysaccharide for 6 and 8 weeks lowered the random blood glucose and decreased the body mass (P<0.05, P<0.01),low and medium-dose Hedysari Radix polysaccharide decreased the gastric emptying rate and the apoptotic index of smooth muscle cells in the astragaloside low-dose group decreased (P<0.05). The protein levels of IGF-1,p-PI3K/PI3K,p-Akt/Akt and Bcl-2(low dose)were down-regulated and the protein level of Bax was up-regulated by low doses of Hedysari Radix polysaccharide (P<0.05, P<0.01). Compared with high-dose Hedysari Radix polysaccharide, low-dose Hedysari Radix polysaccharide elevated random blood glucose and reduced body mass after 6 and 8 weeks of administration (P<0.05, P<0.01), and the low and medium doses decreased the gastric emptying rate, increased the apoptotic index of smooth muscle cells in the gastric antrum (P<0.05, P<0.01), down-regulated the protein levels of IGF-1, p-PI3K/PI3K, p-Akt/Akt, and Bcl-2, and up-regulated the protein level of Bax (P<0.05, P<0.01). Compared with the medium-dose group,the low-dose group of Hedysari Radix polysaccharide had lower body mass,lower gastric emptying rate in rats,higher apoptotic index of smooth muscle cells in gastric sinus tissue after 6 and 8 weeks of administration (P<0.05, P<0.01), and lower protein expression of IGF-1,p-PI3K/PI3K,p-Akt/Akt. ConclusionHedysari Radix polysaccharide protects the smooth muscle cells in gastric antrum against apoptotic injury and promotes gastric motility by activating the IGF-1/PI3K/Akt signaling pathway, as manifested by the up-regulated expression of IGF-1, p-PI3K, p-Akt, and Bcl-2 and down-regulated expression of Bax.

16.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 87-94, 2024.
Article in Chinese | WPRIM | ID: wpr-999164

ABSTRACT

ObjectiveTo establish a mouse model of basilar artery dolichoectasia (BAD) and explore the mechanism of modified Tongqiao Huoxuetang (JTQHX) in regulating BAD via phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. MethodSixty C57/BL6 female mice were randomized into sham operation (injected with 10 U·mL-1 inactivate elastase), model, atorvastatin calcium tablets (2.6 mg·kg·d-1), and low- and high-dose (crude drug 3.4, 17 g·kg-1·d-1, respectively) JTQHX groups. The mouse model of BAD was established by injection with 10 U·mL-1 elastase. After 14 days of modeling, the sham operation group and model group were administrated with equal volumes of pure water by gavage, and other groups with corresponding drugs for 2 months. The levels of interleukin-6 (IL-6) and calpain (LpA) in the serum were measured by enzyme-linked immunosorbent assay (ELISA). Verhoeff 's Van Gieson (EVG) staining was employed to observe the pathological changes of blood vessels. Terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) was employed to examine the apoptosis rate of vascular smooth muscle cells (VSMCs). Image Pro Plus was used to observe and calculate the curvature index, elongation length, percentage increase in vessel diameter, and curvature angle of the basilar artery vessels in mice. Western blot was employed to determine the expression levels of PI3K and Akt in the vascular tissue. ResultCompared with the sham operation group, the model group showed lowered IL-6 level (P<0.01), no significant change in LpA level, increased apoptosis of VSMCs (P<0.01), and increased curvature index, elongation length, percentage increase in vessel diameter, and curvature angle (P<0.01). Furthermore, the modeling up-regulated the protein levels of PI3K and Akt in blood vessels (P<0.01) and aggravated the destruction of the inner elastic layer, atrophy of the muscular layer, and hyaline changes in the connective tissue of the medial membrane of the basilar artery wall. Compared with the model group, 2 months of treatment with JTQHX elevated the IL-6 level (P<0.01), reduced the apoptosis of VSMCs (P<0.01), decreased the curvature index, elongation length, percentage increase in vessel diameter, and curvature angle (P<0.05, P<0.01), and down-regulated the protein levels of PI3K and Akt in blood vessels (P<0.01). In addition, the treatment alleviated the destruction of the inner elastic layer, atrophy of the muscular layer, and hyaline changes in the connective tissue of the medial membrane of the basilar artery wall. ConclusionJTQHX inhibits the elongation, expansion, and curvature of basilar artery vessels and alleviates the pathological changes by reducing the apoptosis of VSMCs and down-regulating the expression of PI3K/Akt pathway.

17.
An. bras. dermatol ; 98(1): 26-35, Jan.-Feb. 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1429619

ABSTRACT

Abstract Background Hypertrophic scar (HS), a fibroproliferative disorder caused by aberrant wound healing following skin injuries such as burns, lacerations and surgery, is characterized by invasive proliferation of fibroblasts and excessive extracellular matrix (ECM) accumulation. The dysregulation of autophagy is the pathological basis of HS formation. Previously, angiopoietin-2 (ANGPT2) was found to be overexpressed in HS fibroblasts (HSFs) compared with normal skin fibroblasts. However, whether ANGPT2 participates in the process of HS formation and the potential molecular mechanisms are not clear. Objective This study is intended to figure out the role of ANGPT2 and ANGPT2-mediated autophagy during the development of HS. Methods RT-qPCR was used to detect ANGPT2 expression in HS tissues and HSFs. HSFs were transfected with sh-ANGPT2 to knock down ANGPT2 expression and then treated with MHT1485, the mTOR agonist. The effects of sh-ANGPT2 or MHT1485 on the proliferation, migration, autophagy and ECM accumulation of HSFs were evaluated by CCK-8 assay, Transwell assay and western blotting. The expression of PI3K/Akt/mTOR pathway-related molecules (p-PI3K, p-Akt and p-mTOR) was assessed by western blotting. Results ANGPT2 expression was markedly upregulated in HS tissues and HSFs. ANGPT2 knockdown decreased the expression of p-PI3K, p-Akt and p-mTOR. ANGPT2 knockdown activated autophagy and inhibited the proliferation, migration, and ECM accumulation of HSFs. Additionally, the treatment of MHT1485, the mTOR agonist, on ANGPT2-downregulated HSFs, partially reversed the influence of ANGPT2 knockdown on HSFs. Study limitations The study lacks the establishment of more stable in vivo animal models of HS for investigating the effects of ANGPT2 on HS formation in experimental animals. Conclusions ANGPT2 downregulation represses growth, migration, and ECM accumulation of HSFs via autophagy activation by suppressing the PI3K/Akt/mTOR pathway. Our study provides a novel potential therapeutic target for HS.

18.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-11, 2023.
Article in Chinese | WPRIM | ID: wpr-978445

ABSTRACT

ObjectiveTo explore the effect and mechanism of Zuojinwan (ZJW) in the treatment of ulcerative colitis (UC) through network pharmacology and experimental validation. MethodUsing network pharmacology and molecular docking, the active components and potential mechanism of ZJW in treating UC were preliminarily identified. Forty-eight male C57BL/6J mice were randomly divided into a normal group, a model group, a sulfasalazine group (300 mg·kg-1), and low-, medium-, and high-dose ZJW groups (1.82, 3.64, 7.28 g·kg-1). The UC model was induced by dextran sulfate sodium (DSS), and oral administration of drugs began on the third day of modeling, lasting for 7 days. The general condition of mice was observed daily, and the disease activity index (DAI) was evaluated. Hematoxylin-eosin (HE) staining was performed to observe histopathological changes in colon tissue. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 in mouse serum. The molecular mechanism was validated using Western blot. ResultNetwork pharmacology predicted that the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway might be a key pathway in the regulation of UC by ZJW. Molecular docking results showed good binding ability between the key components of ZJW and core targets. Animal experiment results showed that compared with the normal group, the model group had shortened colon length (P<0.01), increased DAI scores, spleen index, colon tissue pathology scores, and levels of TNF-α and IL-6 in serum (P<0.05, P<0.01), increased PI3K, phosphorylated Akt (p-Akt), and B-cell lymphoma-2 (Bcl-2)-associated X protein (Bax) expression in colon tissue (P<0.05, P<0.01), and decreased serum IL-10 levels and colon tissue Bcl-2 protein expression (P<0.01). Compared with the model group, the ZJW groups showed significant improvement in UC symptoms, relieved colon tissue pathological damage, downregulated levels of inflammatory cytokines TNF-α and IL-6 in serum (P<0.01), inhibited expression of PI3K, p-Akt, and Bax proteins in colon tissue (P<0.05, P<0.01), and increased serum IL-10 levels and colon tissue Bcl-2 protein expression (P<0.01), with the high-dose group showing the best effect. ConclusionZJW effectively alleviates DSS-induced UC, and its mechanism may be related to the inhibition of the PI3K/Akt signaling pathway and regulation of apoptosis-related protein expression.

19.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 80-87, 2023.
Article in Chinese | WPRIM | ID: wpr-975159

ABSTRACT

ObjectiveTo explore the effects of Bushen Jianpi prescription on the autophagy and phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway in the patients with aplastic anemia (AA). MethodA total of 30 AA patients admitted to Xiyuan Hospital and 6 healthy donors who were prepared to undergo peripheral blood hematopoietic stem cell transplantation in 304 Hospital from September 2020 to August 2021 were enrolled and assigned into an AA group and a control group. The AA group was treated with Bushen Jianpi prescription combined with cyclosporin A (CsA) and androgen for 3 months. The mononuclear cells from bone marrow in the AA group before and after treatment and the peripheral blood of the control group were collected. Transmission electron microscopy was then employed to detect autophagosomes. Western blotting was employed to determine the protein levels of microtuble-associated protein 1 light chain 3 (LC3)Ⅰ, LC3Ⅱ, mTOR, phosphorylated (p)-mTOR, Akt, p-Akt, PI3K, and p-PI3K, and real-time polymerase chain reaction (PCR) to determine the mRNA levels of LC3, mTOR, Akt, and PI3K. ResultIn the AA group, the treatment was completed in 29 patients, and the total response rate was 51.72% (15/29). ① The AA group showed lower levels of white blood cell (WBC), hemoglobin (HGB), platelet (PLT), and absolute neutrophil count (ANC) in the peripheral blood (P<0.01) and lower number of intracellular autophagosomes than the control group before treatment. Moreover, the AA group showed lower mRNA level of LC3 (P<0.01) and protein levels of LC3Ⅰ and LC3Ⅱ (P<0.01) and higher mRNA levels of mTOR, Akt, and PI3Kα (P<0.01) and protein levels of Akt, p-Akt, PI3K, p-PI3K, mTOR, and p-mTOR (P<0.01) than the control group. ② In AA group, the levels of HGB and PLT elevated (P<0.05) and the number of intracellular autophagosomes increased after treatment compared with those before treatment. Moreover, the mRNA level of LC3 and the protein levels of LC3Ⅰ and LC3Ⅱ were up-regulated (P<0.01), the mRNA levels of mTOR, Akt, and PI3Kα (P<0.01) and the protein levels of Akt, p-PI3K (P<0.01), p-Akt, PI3K, mTOR, p-mTOR (P<0.05) were down-regulated after treatment. ConclusionAA patients show lower autophagy levels, while Bushen Jianpi prescription can effectively improve the autophagy level and down-regulated the expression of PI3K/Akt/mTOR signaling pathway in AA patients.

20.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-10, 2023.
Article in Chinese | WPRIM | ID: wpr-975150

ABSTRACT

ObjectiveTo observe the effects of Wendantang on the expression of inflammatory cytokines, autophagy markers, and key molecules of phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway in the adipocytes of the rat model of obesity (syndrome of phlegm-dampness) and to explore the material basis of inflammation in obesity (syndrome of phlegm-dampness) and the underlying mechanism of Wendantang intervention. MethodA total of 126 SD rats were randomized into 2 groups: 16 rats in the blank group and 110 rats in the modeling group. The blank group was fed with a basic diet while the modeling group with a high-fat diet to establish the animal model of obesity (syndrome of phlegm-dampness) for 8 weeks. After successful modeling, 48 obese rats were selected according to their body mass and randomized into a model control group, an orlistat (ORLI, 32.40 mg·kg-1) group, a rapamycin (RAPA, 2 mg·kg-1) group, and low-, medium-, and high-dose (4.45, 8.90, 17.80 g·kg-1, respectively) Wendantang groups, with 8 rats in each group. In addition, 8 rats were randomly selected from the blank group to be set as the normal control group. The corresponding agents in each group were administrated by gavage and the model and control groups were administrated with equal amounts of distilled water once daily for 6 weeks. The body mass, Lee's index, body fat ratio, and obesity rate were measured or calculated. The expression of UNC51-like kinase-1 (ULK1), Beclin1, human autophagy-related protein 5 (Atg5), p62, and microtubule-associated protein 1 light chain 3 (LC3) Ⅰ/Ⅱ (markers of autophagy in adipocytes) was detected by the immunohistochemical two-step method. Enzyme-linked immunosorbent assay (ELISA) was employed to determine the expression of tumor necrosis factor (TNF)-α, interleukin-6 (IL-6), IL-1β, monocyte chemotactic protein-1 (MCP-1), IL-4, IL-10, IL-13, and transforming growth factor (TGF)-β in adipocytes. Western blot was employed to measure the protein levels of classⅠ-PI3K, phosphatidylinositol triphosphate (PIP3), Akt, mTORC1, ULK1, TSC1, and TSC2 in adipocytes. ResultCompared with the blank group, the modeling group showed increased body mass and Lee's index (P<0.01), the obesity rate >20%, and phlegm-dampness syndrome manifestations such as physical obesity, decreased mobility, decreased appetite, lusterless and tight fur, loose stools, decreased responsiveness to the outside world, and decreased water intake. Compared with the normal control group, the model control group showed increased body mass, Lee's index, body fat ratio, adipocyte autophagy marker expression, pro- and anti-inflammatory cytokine levels (P<0.05, P<0.01), down-regulated protein levels of classⅠ-PI3K, PIP3, Akt, mTORC1, TSC1, and TSC2 (P<0.01), and up-regulated protein level of ULK1 (P<0.01). The intervention groups showed lower body mass, body fat ratio, adipocyte autophagy marker protein expression, and protein levels of TNF-α, IL-6, IL-1β, MCP-1, IL-4, and IL-13 than the model control group (P<0.05, P<0.01). Moreover, the RAPA and Wendantang (medium and high dose) groups showed lowered levels of IL-10 and TGF-β (P<0.01), and the ORLI group showed down-regulated expression of TGF-β (P<0.01). The expression of key molecules of the signaling pathway was up-regulated (P<0.05, P<0.01) while that of ULK1 was down-regulated (P<0.01) in all the intervention groups. Compared with the RAPA group, the Wendantang groups showed up-regulated expression of all autophagy marker proteins in adipocytes (P<0.01). In addition, the low-dose Wendantang group showed elevated levels of inflammatory cytokines (except TNF-α) (P<0.05, P<0.01) and down-regulated expression of all key molecules of the signaling pathway (P<0.05, P<0.01). The levels of inflammatory cytokines (except IL-16, MCP-1, and IL-10) were elevated in the medium-dose Wendantang group (P<0.05, P<0.01). The expression of key molecules except PI3K of the signaling pathway was down-regulated in the medium- and high-dose Wendantang groups (P<0.05, P<0.01). Compared with the ORLI group, low- and medium-dose Wendantang groups showed up-regulated expression of autophagy markers in adipocytes (P<0.01), and the low-dose group showed elevated levels of inflammatory cytokines (IL-6, IL-4, and TGF-β) (P<0.01) and down-regulated expression of all key molecules of the signaling pathway (P<0.01). The medium-dose Wendantang group showed up-regulated expression of IL-4 (P<0.01) and down-regulated expression of key molecules except PI3K of the signaling pathway (P<0.05, P<0.01). The high-dose Wendantang group showed increased body mass, up-regulated expression levels of autophagy markers (ULK1, LC3 Ⅰ/Ⅱ) (P<0.05, P<0.01), down-regulated expression of PIP3, mTORC1, and TSC1 (P<0.05, P<0.01), and lowered levels of Beclin1, Atg5, TNF-α, and IL-13 (P<0.05, P<0.01). ConclusionThe inflammation in obesity (syndrome of phlegm-dampness) is closely associated with the PI3K/Akt/mTOR pathway-mediated adipocyte autophagy. Wendantang can treat the chronic inflammation in obese rats with the syndrome of phlegm-dampness by regulating this signaling pathway and thus improve adipocyte autophagy.

SELECTION OF CITATIONS
SEARCH DETAIL