Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
J Biosci ; 1990 Sep; 15(3): 187-191
Article in English | IMSEAR | ID: sea-160798

ABSTRACT

The normal asymmetric distribution of phospholipids in the plasma membrane is perturbed in erythrocytes from patients with chronic myelogenous leukemia. Since experimentally-produced lipid-symmetric erythrocytes are more interactive with cells of the reticuloendothelial system than are their lipid-asymmetric counterparts, the biological recognition of chronic myelogenous leukemia erythrocytes by the reticuloendothelial system was examined. With one exception, all erythrocyte samples from patients with chronic/benign chronic myelogenous leukemia were more adherent to endothelial cells and more readily phagocytosed by macrophages in vitro than were normal erythrocytes. Thus, these naturally occurring pathological erythrocytes display the same dysfunctional intercellular interactions as the laboratory models.

2.
J Biosci ; 1987 Mar; 11(1-4): 543-548
Article in English | IMSEAR | ID: sea-160551

ABSTRACT

The membrane phospholipid organisation in the red cells of humans suffering from chronic myeloid leukaemia has been analysed using the amino-group labelling reagent trinitrobenzenesulphonic acid and the fluid-sensing fluorophore, Merocyanine 540. Unlike the normal human erythrocytes, trinitrobenzenesulphonic acid in intact chronic myeloid leukaemia erythrocytes modified about 30% phosphatidylserine, under controlled conditions. Also, the chronic myeloid laukaemia red cells, but not the normal cells, were found to bind the fluorescent dye Merocyanine 540. These results demonstrate that loss of the transmembrane phospholipid asymmetry in chronic myeloid leukaemia erythrocytes is accompanied by an enhancement in the outer surface fluidity and, therefore, suggest that the red cells membrane phase-state asymmetry originates probably from the asymmetric arrangements of phospholipids across the membrane bilayer.

3.
J Biosci ; 1985 Aug; 8(1&2): 355-362
Article in English | IMSEAR | ID: sea-160399

ABSTRACT

Various structural components of biological membranes are asymmetrically localized in the two surfaces of the membrane bilayer. This asymmetry is absolute for membrane (glyco) proteins, but only a partial asymmetry has been observed for membrane phospholipids. In the red cell membrane, choline-phospholipids are localized mainly in the outer monolayer whereas aminophospholipids are distributed almost exclusively in the inner monolayer. Several evidences are now available to suggest that this distribution of membrane phospholipids in red cells is directly or indirectly maintained by the membrane-associated cytoskeleton (membrane skeleton). This belief is well supported by the previous as well as recent studies carried out in the authors laboratory. Previously, it has been shown that lipidlipid interactions play no major role in maintaining the transmembrane phospholipid asymmetry in erythrocytes, and that the asymmetry is lost upon covalent crosslinking of the major membrane skeletal protein, spectrin. The recent data presented here further shows that degradation or denaturation of spectrin indices rapid transbilayer movement of membrane phospholipids in the cells which, in turn, leads to more random phospholipid distributions across the membrane. These studies taken together strongly suggest that the skeletonmembrane associations are the major determinants of the transmembrane phospholipid asymmetry in erythrocytes, and that the dissociation of the skeleton from the membrane bilayer probably results in generation of new reorientation sites for phospholipids in the membrane.

SELECTION OF CITATIONS
SEARCH DETAIL