Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. arch. biol. technol ; 55(5): 771-777, Sept.-Oct. 2012. ilus, tab
Article in English | LILACS | ID: lil-651661

ABSTRACT

Oat hull hemicellulosic hydrolysate obtained by diluted acid hydrolysis was employed as fermentation medium for Pichia stipitis cultivation. A comparison between the use of treated hydrolysate with 1% activated charcoal to reduce the toxic compounds generated during the hydrolysis process and untreated hydrolysate as a control was conducted. In the cultures using treated hydrolysate the total consumption of glucose, low xylose consumption and ethanol and glycerol formation were observed. The medium formulated with untreated hydrolysate showed morphological cell modifications with consequently cell death, no ethanol formation and formation of glycerol as byproduct of fermentative process, probably as a response to stressful conditions to yeast due to presence of high concentration of toxic compounds. Thus, further studies are suggested in order to determine the best conditions for hydrolysis and detoxification of the hydrolysate to improve the fermentative performance of P. stipitis.

2.
Electron. j. biotechnol ; 13(5): 14-15, Sept. 2010. ilus, tab
Article in English | LILACS | ID: lil-591896

ABSTRACT

Sugar cane bagasse is produced in Brazil as waste of the sugar and ethanol industries. This lignocellulosic material is a potential source for second-generation ethanol production; however a pretreatment stage is essential, which aims at removing the hemicellulose component by disorganizing the lignocellulosic complex. In this work sugar cane bagasse was pretreated by diluted acid hydrolysis resulting in xylose-rich hydrolysates, which could be fermented to ethanol by a strain of the yeast Pichia stipitis. Statistical approach was used to investigate the effects of factors associated with the diluted acid hydrolysis process (acid concentration, solid:liquid ratio and time of exposure) on the fermentability of different hydrolysates. The statistical analysis was useful for determining the effects of the individual factors and their interactions on the response variables. An acid concentration of 1.09 percent (v/v), a solid:liquid ratio of 1:2.8 (g:ml), and an exposure time of 27 min were established and validated as the optimum pretreatment conditions for ethanol production from hemicellulose hydrolysates of sugar cane bagasse. Under these conditions, a hydrolysate with 50 g/l of xylose, 6.04 g/l of acetic acid, 0.55 g/l of hydroxylmethylfurfural and 0.09 g/l of furfural was obtained and its fermentation yielded roughly 20 g/l of ethanol in 40 hrs.


Subject(s)
Cellulose/metabolism , Ethanol/metabolism , Pichia/metabolism , Xylose/metabolism , Fermentation , Hydrolysis , Pichia/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL