Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Article in English | IMSEAR | ID: sea-166801

ABSTRACT

In this study, the thermo-sensitive copolymers were synthesized by graft copolymerization of poly N isopropyl acrylamide (PNIPAm) onto chitosan (Ch) and aminated chitosan (AmCh) derivative. Free radical polymerization using potassium persulphate (KPS) as initiator was used for performing the grafting process. FTIR, TGA and DSC analysis were used to verify the structure of the resulting graft copolymers. The thermal sensitivity of the prepared copolymers was determined by monitoring the phase transition temperature at 550nm using a UV–VIS spectrophotometer. The results show that the transition of the PNIPAm-g-Ch is sharper than that of the PNIPAm-g-AmCh and the tr-ansition, in both cases, became sharper as increase the PNIPAm grating percentage.

2.
Journal of Breast Cancer ; : 18-24, 2014.
Article in English | WPRIM | ID: wpr-7631

ABSTRACT

PURPOSE: Photodynamic therapy (PDT) is gaining increasing recognition for breast cancer treatment because it offers local selectivity and reduced toxic side effects compared to radiotherapy and chemotherapy. In PDT, photosensitizer drugs are loaded in different nanomaterials and used in combination with light exposure. However, the most representative issue with PDT is the difficulty of nanomaterials to encapsulate anticancer drugs at high doses, which results in low efficacy of the PDT treatment. Here, we proposed the development of the poly(N-isopropylacrylamide) (PNIPAM) microgel for the encapsulation of methylene blue, an anticancer drug, for its use as breast cancer treatment in MCF-7 cell line. METHODS: We developed biocompatible microgels based on nonfunctionalized PNIPAM and its corresponding anionically functionalized PNIPAM and polyacrylic acid (PNIPAM-co-PAA) microgel. Methylene blue was used as the photosensitizer drug because of its ability to generate toxic reactive oxygen species upon exposure to light at 664 nm. Core PNIPAM and core/shell PNIPAM-co-PAA microgels were synthesized and characterized using ultraviolet-visible spectroscopy and dynamic light scattering. The effect of methylene blue was evaluated using the MCF-7 cell line. RESULTS: Loading of methylene blue in core PNIPAM microgel was higher than that in the core/shell PNIPAM-co-PAA microgel, indicating that electrostatic interactions did not play an important role in loading a cationic drug. This behavior is probably due to the skin layer inhibiting the high uptake of drugs in the PNIPAM-co-PAA microgel. Core PNIPAM microgel effectively retained the cationic drug (i.e., methylene blue) for several hours compared to core/shell PNIPAM-co-PAA and enhanced its photodynamic efficacy in vitro more than that of free methylene blue. CONCLUSION: Our results showed that the employment of core PNIPAM and core/shell PNIPAM-co-PAA microgels enhanced the encapsulation of methylene blue. Core PNIPAM microgel released the drug more slowly than did core/shell PNIPAM-co-PAA, and it effectively inhibited the growth of MCF-7 cells.


Subject(s)
Breast Neoplasms , Breast , Drug Therapy , Employment , MCF-7 Cells , Methylene Blue , Nanostructures , Photochemotherapy , Radiotherapy , Reactive Oxygen Species , Skin , Spectrum Analysis
3.
Yonsei Medical Journal ; : 803-813, 2000.
Article in English | WPRIM | ID: wpr-46744

ABSTRACT

We have developed two novel cell co-culture system, without any on cell type combination limitation, utilizing a polymer surface which is temperature-sensitive with respect to its cell adhesion characteristics. One system involves a patterned co-culture of primary hepatocytes with endothelial cells utilizing patterned masked of the electron-beam cured, temperature-responsive polymer, poly (N-isopropylacrylamide) (PIPAAm) by masked electron beam irradiation. Hepatocytes were cultured to confluency at 37 degrees C on these surfaces. When the culture temperature was reduced below 32 degrees C, cells detached from the PIPAAm-grafted areas without any need for trypsin. Endothelial cells were then seeded onto the same surfaces at 37 degrees C. These subsequently seeded endothelial cells adhered only to the now-exposed PIPAAm-grafted domains and could be co-cultured with the hepatocytes initially seeded at 37 degrees C in well-ordered patterns. The other system involves a double layered co-culture obtained by overlaying endothelial cell sheets of the designed shape onto hepatocyte monolayers. The endothelial cells adhered and proliferated on the PIPAAm-grafted surface, as on polystyrene tissue culture dishes at 37 degrees C. By reducing the temperature, confluent monolayers of cells detached from the PIPAAm surfaces without trypsin. Because the recovered cells maintaed intact cell-cell junctions together with deposited extracellular matrix, the harvested endothelial cell sheets, with designed shapes, were transferable and readily adhered to hepatocyte monolayers. Stable double layered cell sheets could be co-cultivated. These two co-culture methods enabled long-term co-culture of primary hepatocytes with endothelial cells. Hepatocytes so co-cultured with endothelial cells maintained their differentiated functions, such as albumin synthesis for unexpectedly long periods. These novel two co-culture systems offer promising techniques for basic biologic researches upon intercellular communications, and for the clinical applications of tissue engineered constructs.


Subject(s)
Humans , Acrylic Resins/chemistry , Animals , Coculture Techniques , Cytological Techniques , Endothelium/cytology , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL