Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Year range
1.
Journal of Pharmaceutical Practice ; (6): 12-17, 2024.
Article in Chinese | WPRIM | ID: wpr-1005421

ABSTRACT

Objective To prepare polymersomes (PSs) by block copolymers,evaluate their membrane structural stability,investigate the H+ transmembrane permeability of PSs and the impact of 1,4-dioxane and establish a foundation for drug encapsulation within polymersomes. Methods PSs were self-assembled by a block copolymer, PEG-PLGA, in a solvent solution. The pH-sensitive fluorescence probe HPTS was employed to examine the H+ transmembrane properties of PSs and compare them with PSs prepared using PBD-b-PEO, PS-b-PEO, and liposomes. The effect of varying concentrations of 1,4-dioxane on PSs’ membrane permeability properties was also investigated. Results The fluorescence excitation spectra of HPTS exhibited pH dependency, which showed a linear correlation between extravesicular H+ concentration and t1/2. Significant differences were observed in the membrane permeability capabilities of PSs with different membrane wall thicknesses. Compared to liposomes, the H+ transmembrane coefficients for the three types of PSs were reduced by 2.39×104, 3.38×104, and 5.48×108 times, respectively. 1,4-dioxane was found to modulate the permeability of PSs’ membranes, which displayed a concentration-dependent relationship. Conclusion PSs exhibited significantly lower membrane permeability compared to liposomes, indicating superior stability. 1,4-dioxane was identified as a modulator of PSs’ permeability, which offered potential for drug loading and release within PSs.

2.
Braz. J. Pharm. Sci. (Online) ; 59: e23365, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1520321

ABSTRACT

Abstract Polymersomes are nanometric vesicles that can encapsulate large and hydrophilic biomolecules, such as proteins, in the aqueous core. Data in literature show large variation in encapsulation efficiency (%EE) values depending on the method used for calculation. We investigated different approaches (direct and indirect) to quantify the %EE of different proteins (catalase, bovine serum albumin-BSA, L-asparaginase and lysozyme) in Pluronic L-121 polymersomes. Direct methods allow quantification of the actual payload of the polymersomes and indirect methods are based on the quantification of the remaining non-encapsulated protein. The protein-loaded polymersomes produced presented approximately 152 nm of diameter (PDI ~ 0.4). Higher %EE values were obtained with the indirect method (up to 25%), attributed to partial entanglement of free protein in the polymersomes poly(Ethylene Glycol) corona. For the direct methods, vesicles were disrupted with chloroform or proteins precipitated with solvents. Reasonable agreement was found between the two protocols, with values up to 8%, 6%, 17.6% and 0.9% for catalase, BSA, L-asparaginase and lysozyme, respectively. We believe direct determination is the best alternative to quantify the %EE and the combination of both protocols would make results more reliable. Finally, no clear correlation was observed between protein size and encapsulation efficiency.

3.
São Paulo; s.n; s.n; 2018. 81 p. graf, tab, ilus.
Thesis in Portuguese | LILACS | ID: biblio-909421

ABSTRACT

A L-Asparaginase (ASNase) é um importante agente quimioterapêutico utilizado para o tratamento da leucemia linfoblástica aguda (ALL) há mais de 40 anos. No entanto, devido à origem biológica da ASNase, enzima produzida por Escherichia coli, problemas como a imunogenicidade e baixa meia vida-plasmática devem ser considerados. Com o objetivo de minimizar essas desvantagens, várias ASNases homólogas bem como formulações de ASNase de E. coli foram investigadas. Nenhuma das formulações desenvolvidas, entretanto, foi capaz de resolver definitivamente esses problemas associados à sua origem. Nesse sentido, considerando os recentes avanços na ciência de polímeros com a possibilidade do obtenção de vesículas poliméricas usando copolímeros, este trabalho concentrou-se no desenvolvimento de polimerossomos de poli(etileno glicol)-b-poli(ε-caprolactona) (PEG-PCL) para encapsular a ASNase. Diversas condições experimentais foram investigadas e, ao final, os polimerossomos foram produzidos pela técnica de hidratação do filme polimérico utilizando a centrifugação como técnica de pós-filme para remoção de copolímero precipitado, produzindo assim vesículas polímericas de 120 a 200nm com PDI de aproximadamente 0,250. A eficiência de encapsulação da ASNase, utilizando as metodologias de centrifugação ou cromatografia de exclusão molecular, revelou taxas de encapsulação de 20-25% e 1 a 7%, repectivamente. Esses resultados apontam a importância de se determinar a eficiência de encapsulação por cromatografia de exclusão molecular ou método direto no caso de nanoestruturas auto-agregadas formadas por copolímeros, devido a valores superestimados com o emprego da centrifugação. Ainda que estudos complementares se façam necessários para liberação da enzima encapsulada ou penetração da L-asparagina nas vesículas, nossos resultados demonstram o potencial de polimerossomos para veiculação de ASNase, bem como de outras proteínas terapêuticas


L-Asparaginase (ASNase) is an important chemotherapeutic agent used for the treatment of acute lymphoblastic leukemia (ALL) for more than 40 years. However, due to the biological origin of ASNase (produced by Escherichia coli) some drawbacks such as immunogenicity and low plasma half life are present. In order to minimize the disadvantages, several ASNases proteoforms and formulations of E. coli ASNase were investigated. However, none of this formulations completely solved the main drawbacks of ASNase. In this sense, considering the recents advances in polymers science with the possibility to develop polymeric vesicles using copolymers, this work aimed at the development of poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-PCL) vesicles to encapsulate ASNase. Different experimental conditions were investigated and, the final polymersomes formulation was prepared by film hydratation using centrifugation as a post-film technique to remove the bulky coplymer. Polymeric vesicles of 120 to 200nm with PDI of approximately, 0.250 were obtained. The encapsulation efficiency of ASNase was determined indirectly by centrifugation and directly by size exclusion chromatography, resulting in encapsulation rates of 20-25% and 1 to 7%, respectively. These results indicate the importance of determining the efficiency of encapsulation by size exclusion chromatography or direct method in the case of self-aggregated nanostructures formed by copolymers, due to values overestimated with the use of centrifugation. Our results point to the potential of polymersomes for ASNase delivery, as well as other therapeutic proteins. Nonetheless, complimentary studies are still necessary for ASNase release or L-asparagine penetration into the vesicles


Subject(s)
Asparaginase/analysis , Chromatography, Gel/instrumentation , Capsules , Blister , Escherichia coli/classification
4.
São Paulo; s.n; s.n; 2018. 170 p. ilus, tab, graf.
Thesis in Portuguese | LILACS | ID: biblio-946740

ABSTRACT

A enzima L-Asparaginase (ASNase) é um biofámaco utilizado no tratamento da leucemia linfoblástica aguda, no entanto, a evolução da produção da ASNase como um medicamento desde o final da década de 1970 resultou em apenas quatro alternativas disponíveis no mercado farmacêutico, com relatos de graves reações imunogênicas e toxicidade. Desse modo, a nanotecnologia é uma plataforma que pode ser explorada para administração dessa enzima diminuindo a exposição da mesma a proteases e aumentando a sua meia-vida aparente. Os polimerossomos (PL) são opções que pela nanoestrutura vesicular poderiam encapsular a ASNase em seu core aquoso e pela presença de uma membrana polimérica, são mais robustos que os lipossomos. Assim, neste trabalho objetivou-se desenvolver PL para encapsulação da ASNase como uma alternativa às formulações deste biofármaco existentes. Foram desenvolvidos PL de PEG-PLA, PMPC-PDPA, PEG-PDPA e Pluronic® L-21. Foram estudados fatores relacionados à composição dos copolímeros (fração hidrofílica, responsividade a fatores externos tais como pH e temperatura) e métodos de elaboração (hidratação do filme polimérico, troca de pH e temperatura) bem como foi feita a caracterização dos PL obtidos (tamanho, índice de polidispersão, espessura de membrana, formação de excessivo bulk polimérico, obtenção de micelas). Também foi feito um planejamento racional para encapsulação da ASNase (hidratação direta do filme polimérico e encapsulação por eletroporação, autoagregação com encapsulação por troca de pH ou de temperatura). Para os PL preparados com PEG-PLA, a extrusão resultou em distribuição de tamanhos mais estreitos correspondentes aos valores de PDI de 0,345, 0,144 e 0,081 para PEG45-PLA69, PEG114-PLA153 e PEG114-PLA180, respectivamente. Foi demonstrado que copolímeros com menor fração hidrofóbica resultam em maior eficiência de encapsulação para proteínas, já que possuem volumes aquosos maiores. Com o PMPC25-PDPA72 foi possível encapsular em média três unidades de ASNase por vesículas através da eletroporação ou troca de pH, sendo que no primeiro método houve formação de túbulos e no último método as micelas não foram completamente removidas. Para PEG100-PDPA80, grandes agregados permaneceram após a purificação levando a um PDI alto, mas não foi observada a formação de túbulos, já a troca de pH para este copolímero resultou em maior perda de copolímeros como bulk polimérico precipitado. Para o copolimero tribloco Pluronic® L-121, foi observado que as vesículas eram estáveis durante uma semana à temperatura ambiente, contrariando o que era descrito na literatura. Nesses sistemas, quando preparados por hidratação do filme, a encapsulação da ASNase foi realizada por eletroporação mas a proteína não foi detectada dentro das vesículas. Atribuímos a não-encapsulação à organização da bicamada Pluronic® L-121 sem conformação definida das cadeias poliméricas, dificultando a reorganização do bloco hidrofílico na porção interna do poro durante eletroporação. Por troca de temperatura, cerca de 5 % de ASNase foi encapsulada e o método resultou em total recuperação da atividade da enzima. Desse modo foram obtidos diferentes PL com diferentes características nanoestruturais de acordo com os copolímeros utilizados para carreamento da ASNase


The enzyme L-Asparaginase (ASNase) is a biopharmaceutical used in the treatment of acute lymphoblastic leukemia, still the industrial production of ASNase as a marketable drug since the late 1970s has resulted in only four alternatives available in the pharmaceutical market, with reports of severe immunogenic reactions and toxicity. In this sense, nanotechnology is a platform that can be exploited to administer this enzyme by decreasing its exposure to proteases and increasing its apparent half-life. Polymerosomes (PL) are interesting routes which by its intrinsically vesicular nanostructure could encapsulate the ASNase in its aqueous core and by the presence of a polymeric membrane, being more robust than the liposomes. Thus, in this work it was intended to develop PL for ASNase encapsulation as an alternative to existing formulations of this biopharmaceutical. PL of PEG-PLA, PMPC-PDPA, PEG-PDPA and Pluronic® L-21 were developed. It was studied the copolymers composition (i.e. hydrophilic fraction, responsiveness to external factors such as pH and temperature), PL design (i.e. polymer film hydration, pH change and temperature) and PL characterization (i.e. size, polydispersity index - PDI, membrane thickness, formation of excessive polymer bulk, micelles production). A suitable experimental planning for ASNase encapsulation (i.e. direct hydration of the polymeric film and encapsulation by electroporation, self-aggregation with encapsulation by pH or temperature change) was also performed. For the PL prepared with PEG-PLA, the extrusion resulted in narrower size distribution corresponding to the PDI values of 0.345, 0.144 and 0.081 for PEG45-PLA69, PEG114-PLA153 and PEG114-PLA180, respectively. It has been shown that copolymers with lower hydrophobic fraction result in higher encapsulation efficiency for proteins, since they have larger aqueous volumes. With PMPC25-PDPA72 PL, it was possible to encapsulate three units of ASNase per vesicles through electroporation or pH change. In the first method, tubules were formed and in the latter one the micelles were not completely removed. For PEO100-PDPA80 PL, large aggregates remained after purification leading to a high PDI value, nevertheless no tubule formation was observed, since the pH change for this copolymer resulted in greater loss of copolymers as a precipitated polymer bulk. For the Pluronic® L-121 triblock copolymer PL, it was observed that the vesicles were stable for one week at room temperature, contrary to what was described in the literature. These PLs were prepared by film hydration method and ASNase encapsulation was performed by electroporation, nonetheless the protein was not detected within the vesicles. It is attributed the non-encapsulation to the organization of the Pluronic® L-121 bilayer without defined conformation of the polymer chains, making it difficult to reorganize the hydrophilic block in the internal portion of the pore during electroporation. By temperature change, about 5% of ASNase was encapsulated and the method resulted in complete recovery of enzyme activity. In conclusion, several PLs with a vast range of differential nanostructural characteristics were obtained according to the copolymers used for ASNase loading


Subject(s)
Asparaginase/analysis , Nanostructures/classification , Capsules , Electroporation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
5.
International Journal of Biomedical Engineering ; (6): 65-70,后插1, 2013.
Article in Chinese | WPRIM | ID: wpr-598347

ABSTRACT

Polymersomes have attracted tremendous attention as novel drug delivery systems because of their unique and superior structure,tunable membrane properties,colloidal stability,and ability in encapsulating a broad range of both water soluble and insoluble substances.In this paper,preparation method and criteria for the formation of polymersomes,their structure and characterization as well as amphiphilic block copolymers for vesicle formation are addressed.Moreover,research progress on polymersomes as drug delivery system in the field of therapeutic and diagnostic applications are reviewed in this paper.

SELECTION OF CITATIONS
SEARCH DETAIL