Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Chinese Journal of Radiation Oncology ; (6): 468-470, 2010.
Article in Chinese | WPRIM | ID: wpr-387482

ABSTRACT

Objective To perform thermoluminescent measurements of radial dose function and anisotropy function of a newly designed 192Ir microSelectron-HDR source, and establish evaluation methods for HDR dosimetry.Methods A polystyrene phantom with sylindrical holes in different measure positions was designed to accommodate thermo luminescent dosimeter (TLD) rods and radiation source.TLD rods with similar sensitivity were placed on a semicircle around the source center which had been precisely localized by either radiographic means or dose measurement.Dose-rates were measured at θ = 90° and r = 1-14 cm to calculate radial dose function (gL (r)), while measured along polar angles θ = 0° -165°(interval 15°) at radial distances r = 1 cm, 3 cm and 5 cm to calculate anisotropy function (F(r,θ)).All data were compared with those calculated by Monte Carlo (MC) method.The t-test was used for the statistics.Results The values of gL (r) were 1.007 -0.681 by calculation and 1.007 -0.598 by measurement with r = 1 - 14 cm(t = 0.00 - 2.89, all P > 0.05).The values of F (r,θ) were 0.631 - 1,0.660 - 1 and 0.696 - 1 by calculation, while 0.701 - 1, 0.668 - 1 and 0.629 - 1 by measurement at 1 cm, 3 cm and 5 cm with θ=0° -165°(t=0.40 -1.63, 0.02 -2.10, 0.08 -2.03, all P>0.05).Conclusions The results of radial dose function and anisotropy function measured by TLD measurement are in consistent with those calculated by MC calculations, which can be applied in treatment planning system as original input.

2.
Journal of the Korean Society for Therapeutic Radiology ; : 93-100, 1989.
Article in English | WPRIM | ID: wpr-51206

ABSTRACT

Several combinations of measuring devices and phantoms were studied to measure electron beams. Silicon PN junction diode was used to find the dependence of depth dose profile on field size on axis of electron beam Depths of 50, 80 and 90% doses increased with the field size for small fields. For some larger fields, they were nearly constant. The smallest of field sizes over which the parameters were constant was enlarged with increase of the energy of electron beams. Depth dose distributions on axis of electron beam of 10 x 10 cm2 field were studied with several combinations of measuring devices and phantoms. Cylindrical ion chamber could not be used for measurement of surface dose, and was not convenient for measurement of near surface region of 6 MeV electron. With some exceptions, parameters agreed well with those studied by different devices and phantoms. Surface dose in some energies showed 4% difference between maximum and minimum. For 18 MeV, depths of 80 and 90% doses were considerably shallower by film than by others. Parallel-plate ion chamber with polystyrene phamtom and silicon PN junction would be recommended for measurement of central axis depth dose of electron beams with considerably large field size. It is desirable not to use cylindrical ion chamber for the purpose of measurement of surface dose or near surface region for lower energy electron beam. It is questionable that film would be recommended for measurement of dose distribution of electron with high energy like as 18 MeV.


Subject(s)
Axis, Cervical Vertebra , Polystyrenes , Silicones
SELECTION OF CITATIONS
SEARCH DETAIL