Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Yonsei Medical Journal ; : 742-747, 2012.
Article in English | WPRIM | ID: wpr-14591

ABSTRACT

PURPOSE: Neisseria meningitidis is a leading cause of bacterial meningitis in young adults. University students, especially those living in dormitories, have been known to be at increased risk of meningococcal disease. We performed a longitudinal study to determine the carriage rates of N. meningitidis and the changes thereof. MATERIALS AND METHODS: We recruited Inha University freshmen who were, at that time, admitted to a student dormitory. A pharyngeal swab was taken from all participant who were also asked to complete a questionnaire. This was repeated four weeks later. RESULTS: A total of 136 students were enrolled at the first culture. After four weeks, 128 students were enrolled, including 106 re-participants. The overall carriage rates changed from 11.8% to 14.1%. In analysis of the 106 re-participants, "visiting to pubs" was associated with carriage of N. meningitis for both the first (p=0.047) and second cultures (p=0.026). Serogroup C was found to be the most frequent serogroup (5 isolates), while 3 isolates were found from serogroup B. The most prevalent PorA types were P1.22,14-6 (4 isolates) and P1.19,15 (3 isolates). The DNA sequences of PorA VR2 were changed in 2 students during prolonged carriage. CONCLUSION: The meningococcal carriage rate among first year university students who resided in a dormitory did not significantly increase over 4-week interval between cultures, which is markedly different from those reported in Western studies. Close social contact appeared to be related with carriage. Our data also revealed diversity in PorA types, suggesting the possibility of rapid mutation of the PorA gene during the 4-week interval.


Subject(s)
Female , Humans , Male , Young Adult , Genotype , Korea , Meningococcal Infections/microbiology , Neisseria meningitidis/classification , Serotyping , Students/statistics & numerical data , Universities/statistics & numerical data
2.
Article in English | IMSEAR | ID: sea-135373

ABSTRACT

Campylobacter jejuni is a foodborne pathogen and a leading cause of diarrhoea worldwide. It is believed that a cholera toxin-like toxin (CTLT) produced by C. jejuni may mediate watery diarrhoea. However, the production of a CTLT by C. jejuni is controversial. A cholera toxin gene (ctx) homologue has not been identified in Campylobacter species. We investigated the identity of the CT cross-reactive antigen from Campylobacter species previously and the results are reviewed here. Filtrates of C. jejuni grown in four different liquid media, reported to promote CTLT production, were tested by Chinese hamster ovary (CHO) cell elongation assay for functional toxin and for reactivity with CT antibody using GM1 ganglioside ELISA (GM1 ELISA) and immunoblotting. Protein sequence of the CT antibody-reactive band was determined by matrix-assisted laser desorption ionization-time of flight (MALDI TOF-TOF). Non-jejuni species (C. coli, C. lari, C. foetus, C. hyointestinalis and C. upsaliensis) were investigated by CHO cell assay and immunoblotting. Filtrates from seven C. jejuni reference strains reported to produce CTLT and from 80 clinical strains were negative in the CHO cell assay. However, filtrates from three reference strains and 16 clinical strains were positive by GM1 ELISA. All strains irrespective of GM1 ELISA reactivity, possessed a 53-kDa protein which reacted with CT antibody by immunoblotting. This band was identified as the major outer membrane protein (PorA) of C. jejuni. CT antibody reacted with a C. jejuni recombinant PorA on immunoblotting. All non-C. jejuni strains were negative by CHO cell assay, but the common 53-kDa proteins reacted with CT antibody on immunoblots. The cross-reactivity of PorAs of Campylobacter species with CT may lead to the erroneous conclusion that Campylobacter species produce a functional CTLT.


Subject(s)
Animals , Bacterial Proteins/metabolism , CHO Cells , Campylobacter/metabolism , Campylobacter/pathogenicity , Cholera Toxin/metabolism , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Membrane Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL