Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Neuroscience Bulletin ; (6): 826-840, 2019.
Article in English | WPRIM | ID: wpr-776462

ABSTRACT

Motor timing is an important part of sensorimotor control. Previous studies have shown that beta oscillations embody the process of temporal perception in explicit timing tasks. In contrast, studies focusing on beta oscillations in implicit timing tasks are lacking. In this study, we set up an implicit motor timing task and found a modulation pattern of beta oscillations with temporal perception during movement preparation. We trained two macaques in a repetitive visually-guided reach-to-grasp task with different holding intervals. Spikes and local field potentials were recorded from microelectrode arrays in the primary motor cortex, primary somatosensory cortex, and posterior parietal cortex. We analyzed the association between beta oscillations and temporal interval in fixed-duration experiments (500 ms as the Short Group and 1500 ms as the Long Group) and random-duration experiments (500 ms to 1500 ms). The results showed that the peak beta frequencies in both experiments ranged from 15 Hz to 25 Hz. The beta power was higher during the hold period than the movement (reach and grasp) period. Further, in the fixed-duration experiments, the mean power as well as the maximum rate of change of beta power in the first 300 ms were higher in the Short Group than in the Long Group when aligned with the Center Hit event. In contrast, in the random-duration experiments, the corresponding values showed no statistical differences among groups. The peak latency of beta power was shorter in the Short Group than in the Long Group in the fixed-duration experiments, while no consistent modulation pattern was found in the random-duration experiments. These results indicate that beta oscillations can modulate with temporal interval in their power mode. The synchronization period of beta power could reflect the cognitive set maintaining working memory of the temporal structure and attention.

2.
Clinical Psychopharmacology and Neuroscience ; : 125-129, 2019.
Article in English | WPRIM | ID: wpr-739464

ABSTRACT

Transcranial direct current stimulation (tDCS) is a novel brain stimulation technique which has kindled hope in alleviating motor, language as well as cognitive deficits in neuronal injury. Current case report describes application of tDCS in two phases using two different protocols in a patient with hypoxic injury. In the first phase anodal stimulation of dorsolateral prefrontal cortex improved the language fluency. Subsequently, after 6 months second phase application of anodal stimulation over posterior parietal region targeted arithmetic and working memory deficits. Individualising the treatment protocols of brain stimulation, based on the lesion and the functional deficits, for neuro-rehabilitation is emphasised.


Subject(s)
Humans , Brain , Clinical Protocols , Cognition Disorders , Dyscalculia , Hope , Hypoxia-Ischemia, Brain , Memory, Short-Term , Neurons , Parietal Lobe , Prefrontal Cortex , Rehabilitation , Transcranial Direct Current Stimulation
3.
Chinese Journal of Physical Medicine and Rehabilitation ; (12): 687-690, 2013.
Article in Chinese | WPRIM | ID: wpr-442168

ABSTRACT

Objective To seek more direct evidence of the role of the posterior parietal cortex (PPC) in controlling visuospatial attention.Methods Forty healthy subjects took the Attention Network Test following continuous theta burst stimulation (cTBS) applied over the left or right PPC or sham stimulation.The Attention Network Test measures the alerting,orienting and executive control components of visual attention separately.Results Subjects responded to spatial cues significantly slower after cTBS.Alerting and orienting showed deficits after cTBS over the right PPC.cTBS over the left PPC resulted in significant improvements in alerting,but not in the orienting.Furthermore,there were significant differences in the alerting and orienting indices between cTBS over the left and right PPC,but not in the executive control index.Conclusions The results suggest that the right PPC is associated with spatial orienting and the alerting function.The findings supported the theory of inter-hemispheric competition for visuospatial attention.Visuospatial attention bias might be selectively modulated through cTBS.

4.
In. II International Congress on Neuroregeneration. Proceedings (selected papers). Rio de Janeiro, UFRJ, 2004. p.73-83, ilus.
Monography in English | LILACS | ID: lil-682596

ABSTRACT

Repetitive Magnetic Stimulation (rTMS) has shown to modify the excitability of targeted cortical regions in animals and humans, thus transiently altering the efficiency of neural projections within extended brain networks. Adequate processing and behavioral output depend on a given ‘state’ of functional interactions between cortical and subcortical nodes within this network. We applied rTMS trains targeted at the visuoparietal (VP) cortex, which is a crucial cortical node of an extended visuo-spatial neural network, in both, intact (n=2) and injured cats (n=2) with unilateral ablation of the VP region. All four intact cats were intensively trained in a set of visuo-spatial tasks consisting in the detection and localization of moving or static targets. In two of these cats, a 50 mm circular coil was centered on the left VP cortex and Sham or real rTMS was delivered during 20 minutes at 1 Hz. Real but not Sham rTMS significantly increased the number of errors in orienting responses towards static but not moving targets, presented at the contralateral visual hemifield (38±4%; and 48±3% p<0.05 vs. pre rTMS), whereas no increase respect to baseline was observed for ipsilateral targets (5±2%; 2±1%; n.s). Performance went back to baseline error levels 45 minutes after the end of the stimulation (4±2; 6±1%). In 2 other animals, the right or left parietal and primary visual cortex was surgically removed, generating a Daily stimulation with 1 Hz rTMS on the intact VP region resulted in a progressive reduction of detection¬orienting mistakes to moving but not static stimuli (down to 34±5% and 28±4% errors; p<0.05). We conclude that rTMS is able to interact with brain networks in both ways, transiently disrupting visuo-spatial processing in normal animals, and also canceling spatial neglect generated by lesions of the same areas. It constitutes, thus, a non-invasive ‘surgery-less’ method to manipulate brain activity and promote recovery after injuries.


Subject(s)
Cats , Cerebral Cortex , Neurology , Transcranial Magnetic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL