Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 48: 86-94, nov. 2020. tab, graf, ilus
Article in English | LILACS | ID: biblio-1254836

ABSTRACT

BACKGROUND: Chinese hamster ovary (CHO) cells are the workhorse for obtaining recombinant proteins. Proteomic studies of these cells intend to understand cell biology and obtain more productive and robust cell lines for therapeutic protein production in the pharmaceutical industry. Because of the great importance of precipitation methods for the processing of samples in proteomics, the acetone, methanol-chloroform (M/C), and trichloroacetic acid (TCA)-acetone protocols were compared for CHO cells in terms of protein recovery, band pattern resolution, and presence on SDS-PAGE. RESULTS: Higher recovery and similar band profile with cellular homogenates were obtained using acetone precipitation with ultrasonic bath cycles (104.18 ± 2.67%) or NaOH addition (103.12 ± 5.74%), compared to the other two protocols tested. TCA-acetone precipitates were difficult to solubilize, which negatively influenced recovery percentage (77.91 ± 8.79%) and band presence. M/C with ultrasonic homogenization showed an intermediate recovery between the other two protocols (94.22 ± 4.86%) without affecting protein pattern on SDS-PAGE. These precipitation methods affected the recovery of low MW proteins (< 15 kDa). CONCLUSIONS: These results help in the processing of samples of CHO cells for their proteomic study by means of an easily accessible, fast protocol, with an almost complete recovery of cellular proteins and the capture of the original complexity of the cellular composition. Acetone protocol could be incorporated to sample-preparation workflows in a straightforward manner and can probably be applied to other mammalian cell lines as well.


Subject(s)
Animals , Recombinant Proteins , CHO Cells , Proteomics/methods , Acetone , Chemical Precipitation , Solubility , Trichloroacetic Acid , Cell Separation , Chloroform , Cell Culture Techniques , Methanol , Electrophoresis, Polyacrylamide Gel
2.
Braz. j. med. biol. res ; 41(9): 758-764, Sept. 2008. ilus, tab
Article in English | LILACS | ID: lil-492885

ABSTRACT

Understanding the membrane solubilization process and finding effective solubilizing agents are crucial challenges in biochemical research. Here we report results on the interaction of the novel linear alkylamido propyl dimethyl amino propanosulfonate detergents, ASB-14 and ASB-16, with human erythrocyte membranes. An estimation of the critical micelle concentration of these zwitterionic detergents (ASB-14 = 100 µM and ASB-16 = 10 µM) was obtained using electron paramagnetic resonance. The amount of proteins and cholesterol solubilized from erythrocytes by these detergents was then determined. The hemolytic activities of the ASB detergents were assayed and the detergent/lipid molar ratios for the onset of hemolysis (Re sat) and total lysis (Re sol) were calculated, allowing the determination of the membrane binding constants (Kb). ASB-14 presented lower membrane affinity (Kb = 7050 M-1) than ASB-16 (Kb = 15610 M-1). The amount of proteins and cholesterol solubilized by both ASB detergents was higher while Re sat values (0.22 and 0.08 detergent/lipid for ASB-14 and ASB-16, respectively) were smaller than those observed with the classic detergents CHAPS and Triton X-100. These results reveal that, besides their well-known use as membrane protein solubilizers to enhance the resolution of two dimensional electrophoresis/mass spectrometry, ASB-14 and ASB-16 are strong hemolytic agents. We propose that the physicochemical properties of ASB detergents determine their membrane disruption efficiency and can help to explain the improvement in the solubilization of membrane proteins, as reported in the literature.


Subject(s)
Humans , Alkanesulfonic Acids/pharmacology , Betaine/analogs & derivatives , Cholesterol/metabolism , Detergents/pharmacology , Erythrocyte Membrane/drug effects , Betaine/pharmacology , Electron Spin Resonance Spectroscopy , Electrophoresis, Gel, Two-Dimensional , Erythrocyte Membrane/metabolism , Hemolysis , Mass Spectrometry , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL