Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Journal of Clinical Hepatology ; (12): 397-401, 2024.
Article in Chinese | WPRIM | ID: wpr-1007260

ABSTRACT

In recent years, NOD-like receptor protein 3 (NLRP3) inflammasome in tumors has become a research hotspot, especially in melanoma, colorectal cancer, lung cancer, and breast cancer, and more and more evidence has shown that inflammation plays a role in the development, progression, angiogenesis, and invasion of cancer. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, and there are still controversies over the role of NLRP3 inflammasome in the development and progression of HCC. Therefore, this article reviews the potential impact of NLRP3 inflammasome in the progression of HCC and its mechanism of action in anticancer therapy, and it is believed that NLRP3 inflammasome can be used as an effective therapeutic target for HCC patients.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 193-203, 2023.
Article in Chinese | WPRIM | ID: wpr-996826

ABSTRACT

The prevalence of osteoporosis, osteoarthritis, gouty arthritis, rheumatoid arthritis, and intervertebral disc degeneration is increasing year by year with the growing number of elderly people, and the common clinical manifestations of these diseases include severe pain in different areas, which seriously affects the daily life of the patients. Therefore, how to relieve the pain and reduce the prevalence of bone and joint diseases and improve the quality of life of the patients is a hot spot in the medical field. Studies have confirmed that NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasomes, as pattern recognition receptors, are involved in the inflammation, chondrocyte proliferation, osteoblast and osteoclast differentiation, intervertebral disc cell inflammation and scorching, extracellular matrix degradation and apoptosis, mitochondrial dysfunction, endoplasmic reticulum stress, and reactive oxygen species damage, demonstrating close link with the development of bone and joint diseases. Chinese medicine has a long history and demonstrates remarkable therapeutic effects in the treatment of bone and joint diseases. It can mitigate the pathological changes of bone and joint diseases by inhibiting NLRP3 inflammasomes to alleviate the pain, playing a role in preventing and treating these diseases. Therefore, this paper briefly describes the relationship between NLRP3 inflammasomes and the development of bone and joint diseases by reviewing the latest research progress at home and abroad. We summarize the latest studies about the active components, extracts, and compound prescriptions of Chinese medicines in the treatment of bone and joint diseases via regulating NLRP3 inflammasomes. This review is expected to offer new insights into the in-depth research on the pathogenesis and drug treatment of bone and joint diseases and provide a basis for the clinical application of Chinese medicine in the prevention and treatment of such diseases.

3.
Chinese Journal of Nephrology ; (12): 305-311, 2023.
Article in Chinese | WPRIM | ID: wpr-994979

ABSTRACT

In recent years, with the development of metabolic reprogramming research, people have changed their understanding of the biological effects of immune cells. Under the stimulation of inflammatory response, immune cells re-regulate their metabolism and bioenergetics, provide energy and substrates for cell survival, and initiate immune effect functions. Nod-like receptor protein 3 (NLRP3) inflammasome, as an important component of the innate immune system, has been shown to sense metabolites such as uric acid and cholesterol crystals, and can be inhibited by metabolites such as ketones. It is also regulated by mitochondrial reactive oxygen species and glycolytic components (such as hexokinase). Recent studies have shown that a variety of metabolic pathways converge as effective regulators of NLRP3 inflammasome. The paper reviews the metabolic regulatory pathways and specificity of NLRP3 inflammasome activation, and its role in renal diseases.

4.
Chinese Journal of Nephrology ; (12): 20-31, 2023.
Article in Chinese | WPRIM | ID: wpr-994946

ABSTRACT

Objective:To investigate the potential function and related mechanism of microRNA-223 (miRNA-223) in the podocyte pyroptosis of hepatitis B virus (HBV)-associated glomerulonephritis induced by HBV X protein (HBx).Methods:HBx-overexpressing lentivirus was transfected into human renal podocytes to mimic the pathogenesis of HBV-GN. Real-time fluorescence quantitative PCR and Western blotting experiments were used to detect the mRNA and protein expression of pyroptosis-related proteins [nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1], and inflammatory factors (interleukin-1β and interleukin-18), respectively.TUNEL staining and flow cytometry were used to detect the number of pyroptosis cells. Immunofluorescence staining was used to detect the expression of podocytes biomarkers desmin and nephrin; Hoechst 33342 staining was used to observe the morphological and quantitative changes of podocyte nuclei. Enzyme-linked immunosorbent assay was used to measure caspase-1 activity. The dual luciferase reporter gene assay was used to verify the downstream target of miRNA-223. Podocytes were divided into the following nine groups: control group (no special treatment), empty plasmid group (transfected with empty plasmid), HBx overexpression group (transfected with HBx overexpression lentivirus), HBx overexpression+miRNA-223 mimic group (transfected with HBx overexpression lentivirus and miRNA-223 mimic), HBx overexpression+miRNA-223 inhibitor group (transfected with HBx overexpression lentivirus and miRNA-223 inhibitor), HBx overexpression+miRNA-223 mimic+NLRP3 group (transfected with HBx overexpression lentivirus, miRNA-223 mimic and NLRP3 overexpression plasmid), HBx overexpression+miRNA-223 mimic+ NLRP3 siRNA group (transfected with HBx overexpression lentivirus, miRNA-223 mimic and NLRP3 siRNA), HBx overexpression+miRNA-223 inhibitor+NLRP3 group (transfected with HBx overexpression lentivirus, miRNA-223 inhibitor and NLRP3 overexpression plasmid), HBx overexpression+miRNA-223 inhibitor+NLRP3 siRNA group (transfected with HBx overexpression lentivirus, miRNA-223 inhibitor and NLRP3 siRNA).Results:miRNA-223 was down-regulated in HBx overexpression group compared with the control group ( P < 0.05). TUNEL and immunofluorescence staining showed that NLRP3 knockdown attenuated podocyte injury and pyroptosis induced by HBx overexpression ( P < 0.05). Dual luciferase reporter gene assay demonstrated that NLRP3 was one of the downstream targets of miRNA-223. Rescue experiments revealed that NLRP3 overexpression weakened the protective effect of miRNA-223 in podocyte injury ( P < 0.05). The addition of miRNA-223 mimic and NLRP3 siRNA decreased the expression of NLRP3 inflammasome and cytokines, and reduced the number of pyroptosis cells induced by HBx overexpression (all P < 0.05); The addition of miRNA-223 inhibitor and NLRP3 overexpression plasmid significantly increased the expression of NLRP3 inflammasome and cytokines, caspase-1 activity, and the number of pyroptosis cells (all P < 0.05). Conclusion:HBx may promote podocyte pyroptosis of HBV-GN via downregulating miRNA-223 targeting NLRP3 inflammasome, suggesting that miRNA-223 is expected to be a potential target for the treatment of HBV-GN.

5.
Chinese Journal of Anesthesiology ; (12): 853-857, 2023.
Article in Chinese | WPRIM | ID: wpr-994271

ABSTRACT

Objective:To evaluate the role of NOD-like receptor 3 (NLRP3) inflammasome activation-mediated macrophage polarization in myocardial injury after ischemic stroke in diabetic mice.Methods:Wild-type C57BL/6J mice and NLRP3 -/- mice, aged 4-6 weeks, were fed a high fat diet combined with streptozotocin administration to develop the diabetic model. Twenty-four diabetic wild type C57BL/6J mice and 23 diabetic NLRP3 -/- mice were divided into wild type sham operation group (WT D-SHAM group, n=9) , wild type ischemic stroke group (WT D-MCAO group, n=15) , NLRP3 -/- sham operation group (NLRP3 -/-D-SHAM group, n=9) and NLRP3 -/- ischemic stroke group (NLRP3 -/-D-MCAO group, n=14). The ischemic stroke model was developed by middle cerebral artery occlusion in the animals anesthetized with isoflurane. Echocardiography and electrocardiography were carried out at 3, 7, 14 and 28 days after developing the model. Mice were sacrificed under deep anesthesia, and myocardial tissues were taken at 28 days after surgery for determination of the expression of macrophage marker F4/80 and M2 type macrophage marker CD206 mRNA (by real-time fluorescence quantitative polymerase chain reaction). Results:Compared with WT D-SHAM group, the cardiac output, mass of left ventricle and corrected mass of left ventricle were significantly decreased at 28 days after surgery, and QT interval and QTc interval were prolonged at 14 and 28 days after developing the model in WT D-MCAO group ( P<0.05). Compared with NLRP3 -/-D-SHAM group, the cardiac output, mass of left ventricle and corrected mass of left ventricle were significantly decreased, and QT interval and QTc interval were prolonged at 3 days after surgery in NLRP3 -/-D-MCAO group ( P<0.05). There was no significant difference in CD206 and F4/80 mRNA expression between WT D-SHAM group and WT D-MCAO group and between NLRP3 -/-D-SHAM group and NLRP3 -/-D-MCAO group ( P>0.05). Compared with WT D-MCAO group, the QT interval and QTC interval were significantly shortened at 14 and 28 days after developing the model, and the expression of F4/80 mRNA was down-regulated and the expression of CD206 mRNA was up-regulated at 28 days after developing the model in NLRP3 -/-D-MCAO group ( P<0.05). Conclusions:NLRP3 inflammasome activation-mediated polarization of macrophages to M2 phenotype is involved in myocardial injury after ischemic stroke in diabetic mice.

6.
Chinese Journal of Anesthesiology ; (12): 741-745, 2023.
Article in Chinese | WPRIM | ID: wpr-994257

ABSTRACT

Objective:To evaluate the role of silent information regulator-1 (SIRT1)/nucleotide-binding domain (NOD)-like receptor protein-3 (NLRP3) signaling pathway in sevoflurane postconditioning-induced attenuation of oxygen-glucose deprivation and restoration (OGD/R) injury in mouse hippocampal neuronal cell line (HT22) cells.Methods:The HT22 cells were seeded in a culture plate (96-well plate, 100 μl/well; 6-well plate, 2 ml/well) at the density of 5×10 4 cells/ml or in a culture dish (6 cm in diameter) and then divided into 4 groups ( n=24 each) using a random number table method: control group (Control group), OGD/R group, sevoflurane postconditioning group (SPC group), and SIRT1 small interfering RNA group (si-SIRT 1 group). In Control group, cells were cultured at 37 ℃ in normal culture atmosphere. In OGD/R group, the culture medium was replaced with glucose-free serum-free culture medium, and cells were exposed to 95% N 2+ 5% CO 2 for 4 h in an incubator at 37 ℃, and then the glucose-free serum-free culture medium was replaced with the primary culture medium, and cells were cultured for 24 h at 37 ℃ in normal culture atmosphere. In SPC group, the glucose-free serum-free culture medium was replaced with the primary cell culture medium after 4-h oxygen and glucose deprivation, the cells were put into the hypoxia incubator chamber which was filled with 2% sevoflurane immediately after start of reoxygenation, then the chamber was placed in an incubator and the cells were cultured for 1 h at 37 ℃ in normal culture atmosphere, and finally the cells were removed from the chamber and cultured for 23 h at 37 ℃ in normal culture atmosphere. In si-SIRT1 group, SIRT1 small interfering RNA 150 pmol was added at 24 h before surgery, cells were then incubated, and the other procedures were the same as those previously described in group SPC. The cell survival rate was determined using MTT assay. TUNEL assay was used to detect cell apoptosis, and the apoptosis rate was calculated. The expression of SIRT1, NLRP3, IL-1β and IL-18 mRNA was determined using polymerase chain reaction. The expression of SIRT1, NLRP3, interleukin-1beta (IL-1β) and IL-18 was detected using Western blot. Results:Compared with Control group, the cell survival rate was significantly decreased, the apoptosis rate was increased, the expression of SIRT1 protein and mRNA was down-regulated, and the expression of NLRP3, IL-1β and IL-18 protein and mRNA was up-regulated in OGD/R group ( P<0.05). Compared with OGD/R group, the cell survival rate was significantly increased, the apoptosis rate was decreased, the expression of SIRT1 protein and mRNA was up-regulated, and the expression of NLRP3, IL-1β and IL-18 protein and mRNA was down-regulated in SPC group ( P<0.05). Compared with SPC group, the cell survival rate was significantly decreased, the apoptosis rate was increased, the expression of SIRT1 protein and mRNA was down-regulated, and the expression of NLRP3, IL-1β and IL-18 protein and mRNA was up-regulated in si-SIRT1 group ( P<0.05). Conclusions:Activation of SIRT1-NLRP3 signaling pathway is involved in sevoflurane postconditioning-induced attenuation of OGD/R injury in HT22 cells.

7.
Chinese Journal of Anesthesiology ; (12): 607-612, 2023.
Article in Chinese | WPRIM | ID: wpr-994239

ABSTRACT

Objective:To evaluate the role of bilateral superior cervical sympathetic ganglia (SCG) in myocardial ischemia-reperfusion (I/R) injury in mice and the relationship with NOD-like receptor protein 3 (NLRP3) inflammasomes.Methods:Thirty-two healthy SPF male C57BL mice, aged 8-10 weeks, weighing 25-30 g, were divided into 4 groups ( n=8 each) by the random number table method: sham operation group (NS group), myocardial I/R group (NIR group), bilateral SCG excision group (SCGx group) and bilateral SCG excision + myocardial I/R group (SCGx+ IR group). The myocardial I/R injury model was prepared by ligating the anterior descending branch of the left coronary artery for 30 min followed by 24 h reperfusion in isoflurane-anesthetized mice. Bilateral superior cervical sympathectomy was performed at 3 days before reperfusion. Blood samples were collected from the inferior vena cava at 24 h of reperfusion for examination of pathological changes (by HE and WGA staining) and for measurement of serum creatine kinase isoenzymes (CK-MB) activity, cardiac troponin I (cTnI) concentration, norepinephrine (NE) concentration and lactic dehydrogenase (LDH) activity (by enzyme-linked immunosorbent assay), superoxide dismutase (SOD) activity (by colorimetric method), myocardial reactive oxygen species (ROS) level (by DHE method), myocardial infarct size(by TTC method), and expression of interleukin-1beta (IL-1β), IL-6, IL-10, tumor necrosis factor-alpha (TNF-α), NLRP3 mRNA (by quantitativepolymerase chain reaction ), and expression of tyrosine hydroxylase (TH), IL-1β, TNF-α, NLRP3, atrial natriuretic peptide (ANP)and brain natriuretic peptide (BNP) (by Western blot). Results:Compared with NS group, the NE concentration was significantly decreased, and TH expression was down-regulated in SCGx group, and the serum CK-MB activity, concentrations of cTnI and NE, LDH activity and myocardial ROS level were significantly increased, SOD activity was decreased, the expression of IL-1β, TNF-α, NLRP3, ANP and BNP was up-regulated, and the expression of IL-1β, IL-6, TNF-α and NLPR3 mRNA was up-regulated in NIR group ( P<0.05). Compared with SCGx group, the serum CK-MB activity, concentrations of cTnI and NE, LDH activity and myocardial ROS levels were significamtly increased, SOD activity was decreased, the expression of IL-1β, TNF-α, NLRP3, ANP and BNP was up-regulated, and the expression of IL-1β, IL-6, TNF-α and NLPR3 mRNA was up-regulated in SCGx+ NIR group ( P<0.05). Compared with NIR group, the serum CK-MB activity, cTnI concentration, LDH activity and myocardial ROS level were significantly decreased, SOD activity was increased, the expression of IL-1β, TNF-α, NLRP3, ANP and BNP was down-regulated, the expression of IL-1β, IL-6, TNF-α and NLPR3 mRNA was down-regulated, and myocardial infarct size was decreased in SCGx+ NIR group ( P<0.05). Conclusions:The mechanism by which bilateral SCG excision attenuates myocardial I/R injury is associated with decreased NLRP3 inflammatory inflammasome activation and inhibition of inflammatory responses in mice.

8.
Chinese Journal of Anesthesiology ; (12): 597-601, 2023.
Article in Chinese | WPRIM | ID: wpr-994237

ABSTRACT

Objective:To evaluate the effect of superior cervical ganglion block (SCGB) on cardiac function and nucleotide like receptor protein 3 (NLRP3) signaling pathway in a rat model of myocardial ischemia-reperfusion (I/R).Methods:Sixty healthy SPF male Sprague-Dawley rats, weighing 250-300 g, aged 2-3 months, were divided into 4 groups ( n=15 each) using a random number table method: sham operation group (sham group), myocardial I/R group (IR group), myocardial I/R + normal saline group (IR+ NS group), and myocardial I/R + SCGB group (IR+ SCGB group). Myocardial I/R model was developed by ligation of the left anterior descending branch of the coronary artery for 45 min followed by restoration of blood flow in anesthetized aninals. IR+ SCGB group received SCGB (0.25% ropivacaine 0.1 ml) at 10 min before reperfusion once a day for 2 consecutive weeks, while 0.9% sodium chloride was given instead of ropivacaine in IR+ NS group. Blood samples were collected at 24 h and 14 days of reperfusion for determination of serum concentrations of norepinephrine (NE), troponin T (TnT), tumor necrosis factor-alpha (TNF-α), interleukin-18 (IL-18) and IL-1β by enzyme-linked immunosorbent assay. Echocardiography was performed before ischemia and at 14 days of reperfusion, and left ventricular short axis shortening rate (FS), ejection fraction (EF), and cardiac output (CO) were measured. The rats were sacrificed at 14 days of reperfusion and the hearts were taken for determination of the contents of norepinephrine (NE) in myocardial tissues in the infarction area (by enzyme-linked immunosorbent assay), percentage of myocardial fibrosis area (by Masson staining), M1 macrophage marker CD68 + cell count in the infarction area (by immunohistochemical method), and expression of NLRP3 and gasdermin D (GSDMD) in myocardial tissues (by Western blot). Results:Compared with Sham group, the serum concentrations of TnT, TNF-α, IL-18 and IL-1β, percentage of myocardial fibrosis area, and NE levels in serum and myocardial tissues were significantly increased, the expression of NLRP3 and GSDMD in myocardial tissues was up-regulated, CD68 + cell count was increased, and EF, CO and FS were decreased in IR group ( P<0.05). Compared with IR group, the serum concentrations of TnT, TNF-α, IL-18 and IL-1β, percentage of myocardial fibrosis area, and NE levels in serum and myocardial tissues were significantly decreased, the expression of NLRP3 and GSDMD in myocardial tissues was down-regulated, CD68 + cell count was decreased, and EF, CO and FS were increased in IR+ SCGB group ( P<0.05), and no statistically significant changes were found in the parameters mentioned above in IR+ NS group ( P>0.05). Conclusions:SCGB can improve the cardiac function in a rat model of myocardial I/R, and the mechanism may be related to the inhibition of NLRP3 signaling pathway.

9.
Chinese Journal of Anesthesiology ; (12): 206-209, 2023.
Article in Chinese | WPRIM | ID: wpr-994176

ABSTRACT

Objective:To evaluate the role of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in sepsis-associated encephalopathy (SAE) and the relationship with pyroptosis in microglia of mice.Methods:Twenty-four SPF healthy male C57BL/6J mice, aged 6-8 weeks, weighing 18-22 g, were divided into 3 groups ( n=6 each) using a random number table method: sham operation group (Sham group), SAE group and SAE plus an NLRP3 inhibitor MCC950 group (SAE+ MCC950 group). The mouse model of SAE was prepared by cecal ligation and puncture after anesthesia. MCC950 20 mg/kg was intraperitoneally injected at 1 h after developing the model in SAE+ MCC950 group, and the equal volume of normal saline was given instead in the other groups. Open field tests were conducted at 1 day after developing the model to record the number of rearing and time spent in the central area. Novel object recognition tests were conducted at 2-3 days after developing the model to record the recognition index. After the behavioral experiment on 3 day after developing the model, mice were sacrificed and hippocampal tissues were collected for determination of the expression of NLRP3 (by Western blot), count of cells co-expressing NLRP3 and microglia-specific ionized calcium-binding adaptor molecule 1 (Iba-1) (by immunofluorescence), activity of caspase-1, and contents of interleukin-1beta(IL-1β) and IL-18 (by enzyme-linked immunosorbent assay). Results:Compared with Sham group, the number of rearing was significantly reduced, the time spent in the central area was shortened, the recognition index was decreased, the expression of NLRP3 was up-regulated, the count of NLRP3 + -Iba-1 + cells was increased, and the activity of caspase-1 and contents of IL-1β and IL-18 were increased in SAE and SAE+ MCC950 groups ( P<0.05). Compared with SAE group, the number of rearing was significantly increased, the time spent in the central area was prolonged, the recognition index was increased, the expression of NLRP3 was down-regulated, the count of NLRP3 + -Iba-1 + cells was decreased, and the activity of caspase-1 and contents of IL-1β and IL-18 were decreased in SAE+ MCC950 group ( P<0.05). Conclusions:NLRP3 is involved in the development of SAE, which may be related to the mediation in microglial pyroptosis in mice.

10.
Chinese Journal of Anesthesiology ; (12): 181-185, 2023.
Article in Chinese | WPRIM | ID: wpr-994171

ABSTRACT

Objective:To evaluate the relationship between cannabinoid receptor 1 (CB1R) and the NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) during the reduction of cerebral ischemia-reperfusion (I/R) injury by electroacupuncture (EA) preconditioning in rats.Methods:Forty SPF healthy male Sprague-Dawley rats, aged 7-9 weeks, weighing 250-280 g, were divided into 5 groups ( n=8 each) according to the random number table method: sham operation group (Sham group), cerebral I/R group (I/R group), EA preconditioning group (EA group), CB1R antagonist AM251+ EA preconditioning group (AM251+ EA group), and CB1R agonist WIN 55, 212-2 group (WIN group). Cerebral I/R was induced by middle cerebral artery occlusion (MCAO) in anesthetized animals. In EA group, EA preconditioning was performed, and the acupoint Baihui (GV20) was stimulated for 30 min with disperse-dense waves, the intensity of 1 mA and frequency of 2/15 Hz once a day for 5 consecutive days, and the model of cerebral I/R injury was developed at 24 h after the last EA. In AM251+ EA group, CB1R antagonist AM251 1 mg/kg was intraperitoneally injected at 30 min before each stimulation, and the remaining operations were the same as those previously described in EA group. CB1R agonist WIN 55, 212-2 1.5 mg/kg was intraperitoneally injected for 5 consecutive days, and the model of cerebral I/R injury was prepared at 24 h after the last injection in WIN group. Neurological behavior was assessed and scored at 3 days of reperfusion. Then the rats were sacrificed, and brains were removed, and the infarct volume was measured by TTC staining, and the tissues in the ischemic penumbra were extracted for determination of the expression of NLRP3, caspase-1 and interleukin-1bata (IL-1β) by Western blot. Results:Compared with Sham group, the percentage of cerebral infarct volume was significantly increased, the neurobehavioral score was decreased, and the expression of NLRP3, caspase-1 and IL-1β was up-regulated in I/R group ( P<0.05). Compared with I/R group, the percentage of cerebral infarct volume was significantly decreased, the neurobehavioral score was increased, and the expression of NLRP3, caspase-1 and IL-1β was down-regulated in EA and WIN groups ( P<0.05). Compared with EA group, the percentage of cerebral infarct volume was significantly increased, the neurobehavioral score was decreased, and the expression of NLRP3, caspase-1 and IL-1β was up-regulated in AM251+ EA group ( P<0.05). Conclusions:EA preconditioning may inhibit the activation of NLRP3 inflammasomes by activating CB1R, thus alleviating cerebral I/R injury in rats.

11.
Chinese Journal of Anesthesiology ; (12): 104-109, 2023.
Article in Chinese | WPRIM | ID: wpr-994159

ABSTRACT

Objective:To evaluate the relationship between Sestrin2 and mitochondrial DNA (mtDNA)-NOD-like receptor associated protein 3 (NLRP3) inflammasome pathway during endotoxin-induced myocardial injury in mice.Methods:One hundred and eighty-four clean-grade healthy male ICR mice, aged 8-12 weeks, weighing 20-25 g, were used in this study. One hundred and sixty-eight mice were divided into 7 groups ( n=24 each) using the random number table method: normal control group (N group), lipopolysaccaride(LPS) group (L group), mtDNA group, LPS+ mtDNA group (M group), normal control+ negative control adeno-associated virus (AAV-NC)group (NC group), LPS+ mtDNA+ AAV-NC group (MC group), and LPS+ mtDNA+ Sestrin2 overexpression adeno-associated virus (AAV-Sestrin2) group (MSgroup). Another 10 mice were used to detect the transfection effect of AAV-Sestrin2, and the left 6 mice were used for mtDNA extraction. The model of endotoxemia was developed by intraperitoneal injection of LPS 10 mg/kg. mtDNA 5 mg/kg was intraperitoneally injected in mtDNA group, and mtDNA 5 mg/kg was intraperitoneally injected at 30 min after LPS injection in M group.AAV-Sestrin2 150 μl was injected via the tail vein in MS group, and the equal volume of AAV-NC was injected via the tail vein in MC and NC groups. Four weeks after virus injection, LPS 10 mg/kg was intraperitoneally injected and 30 min later mtDNA 5 mg/kg was intraperitoneally injected in MS and MC groups. Blood samples were collected at 24 h after LPS injection for determination of serum creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH) activities (by biochemical assay), concentrations of serum cardiac troponin I (cTnI), interleukin-18 (IL-18) and interleukin-1beta (IL-1β)(by enzyme-linked immunesorbent assay), and expression of mtDNA (by quantitative real-time polymerase chain reaction). The animals were sacrificed after the end of blood sampling and myocardial tissues were obtained for determination of the contents of reactive oxygen species (ROS), total antioxidant capacity (T-AOC), and adenosine triphosphate (ATP) and expression of NOD-like receptor associated protein 3 (NLRP3), active subunit p20 of caspase-1 (caspase-1p20) and apoptosis-associated microprotein (ASC) in myocardial tissues (by Western blot) and for microscopic examination of the pathological changes after HE staining (with a light microscope). Results:Compared with N group, the levels of CK-MB, LDH, cTnI, IL-1β and IL-18 in serum were significantly increased, the expression of mtDNA was up-regulated, the ROS content in myocardial tissues was increased, the T-AOC and ATP contents in myocardial tissues were decreased, the expression of NLRP3, caspase-1p20 and ASC in the myocardial tissues was up-regulated( P<0.05), and the pathological changes of myocardial tissues were aggravated in L group and mtDNA group.Compared with L group and mtDNA group, the levels of CK-MB, LDH, cTnI, IL-1β and IL-18 in serum were significantly increased, the expression of mtDNA was up-regulated, the ROS content in myocardial tissues was increased, the T-AOC and ATP contents in myocardial tissues were decreased, the expression of NLRP3, caspase-1p20 and ASC in the myocardial tissues was up-regulated( P<0.05), and the pathological changes of myocardial tissues were aggravated in M group. Compared with M group, the levels of CK-MB, LDH, cTnI, IL-1β and IL-18 in serum were significantly decreased, the expression of mtDNA was down-regulated, the ROS content in myocardial tissues was decreased, the T-AOC and ATP contents in myocardial tissues were increased, the expression of NLRP3, caspase-1p20 and ASC in the myocardial tissues was down-regulated( P<0.05), and the pathological changes of myocardial tissues were significantly attenuated in MS group. Conclusions:Sestrin2 can reduce endotoxin-induced myocardial injury in mice by alleviating mitochondrial damage, inhibiting oxidative stress, protecting mtDNA from oxidative damage, and then inhibiting mtDNA-NLRP3 inflammasome pathway.

12.
Journal of Chinese Physician ; (12): 486-490, 2023.
Article in Chinese | WPRIM | ID: wpr-992327

ABSTRACT

Objective:To explore the potential role of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)/GATA-binding protein 4 (GATA-4)/vascular endothelial growth factor (VEGF) signal pathway in neovascular age-related macular degeneration (nAMD).Methods:We applied the TRANSFAC Public database to search the human and mouse VEGF promoters and upstream transcription factors, analyzed the transcription factors that may influence the transcriptional activity of VEGF. The RAW264.7 cells were divided into control group and lipopolysaccharide (LPS) stimulated group (LPS group). Real time fluorescence quantitative polymerase chain reaction (qRT-PCR) was used to detect the activation of NLRP3 inflammasome, and the mRNA levels of GATA-4 and VEGFA. Thus, we applied the specific small molecular NLRP3 inhibitor MCC950 pretreated RAW264.7 cells (LPS+ MCC950 group), and detected the gene expression of NLRP3, Caspase-1, interleukin 1β( IL-1β), GATA-4 and VEGFA.Results:There were multiple GATA transcription factor binding sites upstream of human and mouse VEGF promoters. Compared with the control group, mRNA expression of NLRP3, Caspase-1, IL-1β, GATA-4 and VEGFA in LPS group were increased (all P<0.05). Compared with LPS group, mRNA expression of NLRP3, Caspase-1, IL-1β, GATA-4 and VEGFA in LPS+ MCC950 group were significantly decreased (all P<0.05). Conclusions:NLRP3/GATA-4/VEGF signal pathway may play a significant role in the pathologic processes of nAMD.

13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 122-128, 2023.
Article in Chinese | WPRIM | ID: wpr-960914

ABSTRACT

ObjectiveTo explore the effect of Babaodan (BBD) on the NOD-like receptor pyrin domain containing 3/cysteine aspartate-specific protease-3 (NLRP3/Caspase-1) pathway proteins in mice with acetaminophen (APAP)-induced acute liver injury. MethodC57BL/6 mice were randomly grouped, and BBD (75, 150, 300 mg·kg-1, ig) was administered twice a day for three days. After 2 hours of the last administration, the mice were treated with APAP (400 mg·kg-1, ip), and the eyeballs were removed to collect blood after 14 hours. Then they were sacrificed by cervical dislocation for sample collection. Hematoxylin-eosin (HE) staining was used to observe the morphological changes of liver tissue cells, and biochemical methods were used to detect the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), superoxide dismutase (SOD), malondialdehyde (MDA) and myeloperoxidase (MPO) in serum of mice in each group. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was performed to determine the mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6, and Western blot was performed to determine the protein expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), NLRP3, Caspase-1 and IL-18 in the liver of mice. ResultCompared with the conditions in normal group, the hepatic lobule structure of mice in the model group was partially destroyed, and the hepatic sinusoids were dilated. And the expression levels of ALT and AST in serum, the protein levels of NLRP3, Caspase-1, iNOS, IL-18 and COX-2 and the mRNA levels of IL-1β, IL-6 and TNF-α were increased (P<0.05, P<0.01). Compared with the model group, the administration groups had improvement in liver cell rupture and hepatic sinusoidal compression, and a dose-dependent decrease in the levels of ALT and AST in serum as well as the protein levels of NLRP3, Caspase-1, iNOS, IL-18 and COX-2 and the the mRNA levels of IL-1β, IL-6 and TNF-α in liver tissue (P<0.05, P<0.01). ConclusionBBD can reduce APAP-induced acute liver injury in mice. The mechanism may be related to anti-oxidative stress, inhibition of NLRP3/Caspase-1 pathway, and decreased expression levels of IL-1β, IL-18, TNF-α and IL-6.

14.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 9-17, 2023.
Article in Chinese | WPRIM | ID: wpr-979446

ABSTRACT

ObjectiveTo investigate the mechanism of Xumingtang in Gu Jin Lu Yan (《古今录验》) in regulating cell pyroptosis through the hypoxia-inducible factor-1α (HIF-1α)/NOD-like receptor pyrin domain-containing protein 3 (NLRP3) pathway in ischemic stroke (IS). MethodSD rats were randomly divided into a sham operation group, a model group, low- and high-dose Xumingtang groups, and a metformin group, with 20 rats in each group. Oral administration was performed for 3 days, and tissue samples were collected. Differential messenger RNA (mRNA) was screened using high-throughput sequencing, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed on key differentially expressed genes. The modified neurological severity score (mNSS) and 2,3,5-triphenyltetrazolium chloride (TTC) staining were used to evaluate the effect of brain infarction. Hematoxylin-eosin (HE) staining was used for pathological morphological observation of brain tissue. Enzyme-linked immunosorbent assay (ELISA) was used to compare the levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18) in the ischemic cortical region. Double staining immunohistochemistry was used to detect the co-localization of HIF-1α and NLRP3. Real-time quantitative polymerase chain reaction (PCR) was performed to detect the mRNA expression of NLRP3, HIF-1α, Caspase-1 (CASP-1), and gasdermin D (GSDMD). Western blot was used to detect the protein expression of HIF-1α, NLRP3, CASP-1, and GSDMD. ResultA total of 5 705 differentially expressed genes (2 733 downregulated and 2 972 upregulated) were obtained by mRNA sequencing. After conversion to homologous genes and intersection with the pyroptosis gene set, 95 key differentially expressed pyroptosis genes were obtained. Compared with the sham operation group, the model group showed significantly increased mNSS scores, larger brain infarction areas (P<0.01), diverse neuronal morphology, disordered arrangement, widened cell gaps, significantly increased levels of IL-1β and IL-18 in the ischemic cortical region (P<0.01), enhanced co-localization fluorescence intensity, and significantly increased mRNA and protein expression levels of HIF-1α, NLRP3, CASP-1, and GSDMD (P<0.01). Compared with the model group, the high-dose Xumingtang group showed the most significant improvement in neurological function scores and brain infarction areas (P<0.01). The neuronal integrity and arrangement were more complete, and the cell gaps were narrower in all groups with drug treatment, with significantly reduced co-localization fluorescence intensity. Xumingtang could reduce the levels of IL-1β, IL-18, and the mRNA and protein expression of HIF-1α, NLRP3, CASP-1, and GSDMD (P<0.05, P<0.01), with the high-dose Xumingtang group showing the most significant effect (P<0.01). ConclusionXumingtang in Gu Jin Lu Yan can inhibit cell pyroptosis and promote neurological function recovery after IS, which may be related to the inhibition of the HIF-1α/NLRP3 pathway.

15.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 232-241, 2023.
Article in Chinese | WPRIM | ID: wpr-976558

ABSTRACT

Ulcerative colitis (UC) is a common inflammatory bowel disease (IBD) in clinical practice, characterized by symptoms such as abdominal pain, diarrhea, and bloody mucus in the stool. It is difficult to cure and has a high recurrence rate. The pathogenesis of UC is related to abnormal immune response, oxidative stress in intestinal tissues, and inflammatory reactions. As reported, the abnormal activation of the NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is involved in the pathological process of UC. This activation triggers pathological mechanisms such as oxidative stress, pyroptosis, and inflammation in intestinal epithelial cells. Therefore, blocking the abnormal activation of NLRP3 is beneficial for alleviating UC. Currently, western medicine treatment for UC mainly includes salicylic acid derivatives, corticosteroids, and biologics, but the overall efficacy is unsatisfactory. Traditional Chinese medicine (TCM) treatment of this disease has the advantages of significant efficacy and low recurrence rate. In recent years, great advances have been made in the basic research of using TCM methods to treat UC. Studies have found that TCM intervention targeting the NLRP3 inflammasome can significantly promote intestinal mucosal healing and treat UC, and the mechanism of action involves multiple targets, levels, and pathways. This article summarized the experimental research on the impact of TCM targeting the NLRP3 inflammasome on UC in recent years, and found that NLRP3 interacted with factors such as Caspase-1 and nuclear factor-κB (NF-κB), thereby promoting the release of pro-inflammatory factors and cell pyroptosis in intestinal epithelial cells. This activation triggered oxidative stress, inflammatory reactions, and other pathological mechanisms. TCM acted on the NLRP3 inflammasome and its upstream and downstream factors to block the pathological process of UC, inhibit the pathological damage to the intestinal mucosa, and thereby alleviate colonic ulcers. The findings of this study provide a theoretical basis for the prevention and treatment of UC and further drug development.

16.
China Pharmacy ; (12): 1053-1059, 2023.
Article in Chinese | WPRIM | ID: wpr-972946

ABSTRACT

OBJECTIVE To investigate the effects of salidroside (Sal) on myocardial fibrosis and pyroptosis and its potential mechanism. METHODS The mice were randomly divided into control group, model group and Sal low-dose, medium-dose and high-dose groups, with 10 mice in each group. Except for the control group, the mice in other groups were injected subcutaneously with isoproterenol 5 mg/(kg·d)to prepare the myocardial fibrosis model. Since modeling, mice in the Sal low-dose, medium-dose and high-dose groups were given 10, 30 and 50 mg/kg of Sal by intragastric administration every day; control group and model group were given 10 mL/kg of normal saline by intragastric administration every day, for 14 consecutive days. After the last medication, the mice were sacrificed; hematoxylin-eosin staining was used to observe pathological change of myocardial tissue and calculate the diameter of myocardial cell; Masson and Sirius Red staining were used to observe the degree of myocardial fibrosis in mice and calculate the collagen volume fraction (CVF); quantitative real-time PCR was performed to detect the mRNA expressions of collagen type Ⅰ (Col Ⅰ), α-smooth muscle actin (α-SMA), Toll-like receptor 4 (TLR4), NOD-like receptor pyrin domain containing 3 (NLRP3), caspase-1 andgasdermin D (GSDMD) in myocardial tissues. The total protein expressions of Col Ⅰ, α-SMA, TLR4, NLRP3,caspase-1 and GSDMD in myocardial tissues and protein-positive cell score were measured by Western blot assay and immunohistochemistry. RESULTS Compared with control group, the myocardial cells in the model group were enlarged, the arrangement of myocardial fibers was disordered, the matrix metabolism was significantly increased, the CVF in myocardial tissue was significantly increased, and the mRNA and protein expression levels of Col Ⅰ, α-SMA, TLR4, NLRP3, caspase-1 and GSDMD were elevated and protein-positive cell score was increased significantly (P<0.01). Compared with model group, the myocardial cell morphology was clearer, myocardial fibrosis was alleviated, and the levels of the above indicators in myocardial tissue of Sal medium-dose and high-dose groups had been reversed to varying degrees, especially in Sal high-dose group(P<0.05 or P<0.01). In addition, the Sal low-dose group also reversed some fibrosis and pyroptosis-related indicators to some extent. CONCLUSIONS Sal can significantly prevent the occurrence and development of myocardial fibrosis, and the mechanism of action may be related to the inhibition of TLR4-mediated pyroptosis pathway in myocardial tissue.

17.
Acta cir. bras ; 38: e380123, 2023. graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1429535

ABSTRACT

Purpose: Myocardial ischemia/reperfusion injury (MIRI) leads to myocardial tissue necrosis, which will increase the size of myocardial infarction. The study examined the protective effect and mechanism of the Guanxin Danshen formula (GXDSF) on MIRI in rats. Methods: MIRI model was performed in rats; rat H9C2 cardiomyocytes were hypoxia-reoxygenated to establish a cell injury model. Results: The GXDSF significantly reduced myocardial ischemia area, reduced myocardial structural injury, decreased the levels of interleukin (IL-1ß, IL-6) in serum, decreased the activity of myocardial enzymes, increased the activity of superoxide dismutase (SOD), and reduced glutathione in rats with MIRI. The GXDSF can reduce the expression of nucleotide- binding oligomerization domain, leucine-rich repeat and pyrin domain containing nod-like receptor family protein 3 (NLRP3), IL-1ß, caspase-1, and gasdermin D (GSDMD) in myocardial tissue cells. Salvianolic acid B and notoginsenoside R1 protected H9C2 cardiomyocytes from hypoxia and reoxygenation injury and reduced the levels of tumor necrosis factor α (TNF-α) and IL-6 in the cell supernatant, decreasing the NLRP3, IL-18, IL-1ß, caspase-1, and GSDMD expression in H9C2 cardiomyocytes. GXDSF can reduce the myocardial infarction area and alleviate the damage to myocardial structure in rats with MIRI, which may be related to the regulation of the NLRP3. Conclusion: GXDSF reduces MIRI in rat myocardial infarction injury, improves structural damage in myocardial ischemia injury, and reduces myocardial tissue inflammation and oxidative stress by lowering inflammatory factors and controlling focal cell death signaling pathways.


Subject(s)
Animals , Rats , Myocardial Reperfusion , Reperfusion Injury , Ginsenosides/administration & dosage , NLR Family, Pyrin Domain-Containing 3 Protein
18.
Acta cir. bras ; 38: e387323, 2023. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1527590

ABSTRACT

Purpose: To observe the effect of puerarin on renal ischemia-reperfusion (I/R) injury in rats, and to explore its mechanism based on NLRP3/Caspase-1/GSDMD pathway. Methods: Twenty-one Sprague-Dawley rats were divided into three groups: sham-operated group (sham), model group (RIRI), and puerarin treatment group (RIRI + Pue). The model of acute renal I/R injury was established by cutting the right kidney and clamping the left renal pedicle for 45 min. Results: Renal function parameters were statistically significant in group comparisons. The renal tissue structure of rats in sham group was basically normal. Pathological changes were observed in the RIRI group. The renal pathological damage score and apoptosis rate in the RIRI group were higher than those in the sham group, and significantly lower in the RIRI + Pue group than in the RIRI group. Indicators of oxidative stress-superoxide dismutase, malondialdehyde, and glutathione peroxidase-were statistically significant in group comparisons. Compared with the sham group, the relative expressions of NLRP3, Caspase-1 and GSDMD proteins in the RIRI group were increased. Compared with the RIRI group, the RIRI + Pue group had significant reductions. Conclusions: Puerarin can inhibit the activation of NLRP3/Caspase-1/GSDMD pathway, inhibit inflammatory response and pyroptosis, and enhance the antioxidant capacity of kidney, thereby protecting renal I/R injury in rats.


Subject(s)
Animals , Rats , Reperfusion Injury , Pyroptosis , Inflammation , Kidney/injuries
19.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 174-188, 2023.
Article in Chinese | WPRIM | ID: wpr-997671

ABSTRACT

The aberrant activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome as an essential component of the innate system is implicated in the pathogenesis of several human inflammatory diseases. Studies have confirmed its association with digestive system diseases such as ulcerative colitis, Crohn's disease, and acute pancreatitis, suggesting that the NLRP3 inflammasome plays a role in the initiation and progression of these diseases. Based on the mechanism of NLRP3 inflammasome activation and the pathways that mediate the inflammatory response, this article introduced the relationship between the NLRP3 inflammasome and the pathogenesis of multiple digestive system diseases and the Chinese and western medical therapies. Traditional Chinese medicine (TCM) has demonstrated definite effects on the NLRP3 inflammasome-mediated digestive system diseases. Some single Chinese medicines or TCM prescriptions can treat digestive system diseases by activating or inhibiting NLRP3 inflammasome activation. NLRP3 inflammasome can receive a variety of endogenous and exogenous stimulatory signals, which can initiate, activate, and mediate inflammatory responses. The inflammasome formation and downstream inflammatory cytokines are involved in not only the inflammatory responses but also the development and progression of multiple digestive system diseases. Therefore, the NLRP3 inflammasome can serve as an ideal target for disease treatment. The future rediscovery and in-depth studies of multiple inflammasomes will shed new light on the treatment of multiple digestive system diseases.

20.
Chinese Journal of Anesthesiology ; (12): 1360-1364, 2022.
Article in Chinese | WPRIM | ID: wpr-994118

ABSTRACT

Objective:To evaluate the role of NIMA-related kinase 7 (NEK7)/Nod-like receptor family pyrin domain-containing protein 3 (NLRP3) signaling pathway in sepsis-associated encephalopathy in mice.Methods:A total of 150 healthy adult male C57BL/6 mice, aged 8-12 weeks, weighing 20-25 g, were divided into 5 groups ( n=30 each) by a random number table method: sham operation group (Sham group), sepsis group (CLP group), sepsis+ NLRP3 inhibitor MCC950 group (CLP+ MCC950 group), sepsis+ NEK7 siRNA group (CLP+ NEK7 siRNA group), and sepsis+ NC siRNA group (CLP+ NC siRNA group). Sepsis was induced by classic cecal ligation and puncture (CLP) in anesthetized animals.MCC950 10 mg/kg was intraperitoneally injected for 3 consecutive days after operation in CLP+ MCC950 group, while the equal volume of normal saline was given instead in Sham group.Immediately after operation and on 3rd day after operation, NEK7 siRNA 3 nmol/20 g was injected into the ventricle in CLP+ NEK7 siRNA group, and the equal dose of NC siRNA was injected into the ventricle instead in Sham group.The survival of mice was recorded on 4th postoperative day.On 4th and 7th days after operation, 10 mice in each group were selected for Y maze space recognition experiment.On 7th day after operation, 5 mice in each group were randomly sacrificed and hippocampal tissues were taken for determination of the contents of interleukin-1beta (IL-1β), interleukin-18 (IL-18) and tumor necrosis factor-alpha (TNF-α) (by enzyme-linked immunosorbent assay), and 6 mice in each group were sacrificed and hippocampal tissues were taken for determination of the expression of NEK7, NLRP3, cleaved-caspase-1 and apoptosis-associated speck-like protein containing a caspase-1 recruitment domain (ASC) (by Western blot). Results:The survival rates were 100%, 50%, 73%, 60% and 53% in Sham, CLP, CLP+ MCC950, CLP+ NEK7 siRNA, and CLP+ NC siRNA groups, respectively, on day 4 after surgery.Compared with Sham group, the frequency of entries into novel arm was significantly reduced, and the time spent in the novel arm was shortened at 4th and 7th days after operation, and the contents of IL-1β, IL-18 and TNF-α in hippocampus were increased, and the expression of NEK7, NLRP3, cleaved-caspase-1 and ASC was up-regulated at 7th day after operation in CLP group ( P<0.05). Compared with CLP group, the frequency of entries into novel arm was significantly increased, and the time spent in the novel arm was prolonged at 4th and 7th days after operation, and the contents of IL-1β, IL-18 and TNF-α in hippocampus were decreased at 7th day after operation in CLP+ MCC950 and CLP+ NEK7 siRNA groups, the expression of NLRP3, cleaved-caspase-1 and ASC was significantly down-regulated at 7th day after operation in CLP+ MCC950 group, the expression of NEK7, NLRP3, cleaved-caspase-1 and ASC was significantly down-regulated in CLP+ NEK7 siRNA group ( P<0.05), and no significant change was found in the parameters mentioned above in CLP+ NC siRNA group ( P>0.05). Conclusions:NEK7/NLRP3 signaling pathway is involved in SAE in mice, and the underlying mechanism may be related to promotion of inflammatory responses.

SELECTION OF CITATIONS
SEARCH DETAIL