Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Zhejiang University. Science. B ; (12): 537-548, 2020.
Article in English | WPRIM | ID: wpr-846953

ABSTRACT

Objective: The present study was to evaluate the feasibility of using the multi-biomarker strategy for the prediction of sepsis-induced myocardial dysfunction (SIMD) and mortality in septic patients. Methods: Brain natriuretic peptide (BNP), cardiac troponin I (cTnI), and heart-type fatty acid-binding protein (h-FABP) in 147 septic patients were assayed within 6 h after admission. We also determined the plasma levels of myeloperoxidase (MPO) and pregnancy-associated plasma protein-A (PAPP-A). The receiver operating characteristic (ROC) curve was used to assess the best cutoff values of various single-biomarkers for the diagnosis of SIMD and the prediction of mortality. Also, the ROC curve, net reclassification improvement (NRI), and integrated discrimination improvement (IDI) indices were used to evaluate the feasibility of using multi-biomarkers to predict SIMD and mortality. Results: Our statistics revealed that only h-FABP independently predicted SIMD (P0.05). A history of shock and MPO were independent predictors of mortality in septic patients (both P0.05). Conclusions: The findings of this study indicate that a sensitive and specific strategy for early diagnosis of SIMD and mortality prediction in sepsis should incorporate three biomarkers.

2.
Journal of Zhejiang University. Science. B ; (12): 509-523, 2020.
Article in English | WPRIM | ID: wpr-846949

ABSTRACT

As the most prevalent and abundant transcriptional modification in the eukaryotic genome, the continuous and dynamic regulation of N6-methyladenosine (m6A) has been shown to play a vital role in physiological and pathological processes of cardiovascular diseases (CVDs), such as ischemic heart failure (HF), myocardial hypertrophy, myocardial infarction (MI), and cardiomyogenesis. Regulation is achieved by modulating the expression of m6A enzymes and their downstream cardiac genes. In addition, this process has a major impact on different aspects of internal biological metabolism and several other external environmental effects associated with the development of CVDs. However, the exact molecular mechanism of m6A epigenetic regulation has not been fully elucidated. In this review, we outline recent advances and discuss potential therapeutic strategies for managing m6A in relation to several common CVD-related metabolic disorders and external environmental factors. Note that an appropriate understanding of the biological function of m6A in the cardiovascular system will pave the way towards exploring the mechanisms responsible for the development of other CVDs and their associated symptoms. Finally, it can provide new insights for the development of novel therapeutic agents for use in clinical practice.

SELECTION OF CITATIONS
SEARCH DETAIL