Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Journal of Zhejiang University. Science. B ; (12): 29-41, 2020.
Article in English | WPRIM | ID: wpr-846987

ABSTRACT

multiple myeloma (MM), considered an incurable hematological malignancy, is characterized by its clonal evolution of malignant plasma cells. Although the application of autologous stem cell transplantation (ASCT) and the introduction of novel agents such as immunomodulatory drugs (IMiDs) and proteasome inhibitors (PIs) have doubled the median overall survival to eight years, relapsed and refractory diseases are still frequent events in the course of MM. To achieve a durable and deep remission, immunotherapy modalities have been developed for relapsed/refractory multiple myeloma (RRMM). Among these approaches, chimeric antigen receptor (CAR) T-cell therapy is the most promising star, based on the results of previous success in B-cell neoplasms. In this immunotherapy, autologous T cells are engineered to express an artificial receptor which targets a tumor-associated antigen and initiates the T-cell killing procedure. Tisagenlecleucel and Axicabtagene, targeting the CD19 antigen, are the two pacesetters of CAR T-cell products. They were approved by the US Food and Drug Administration (FDA) in 2017 for the treatment of acute lymphocytic leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL). Their development enabled unparalleled efficacy in combating hematopoietic neoplasms. In this review article, we summarize six promising candidate antigens in MM that can be targeted by CARs and discuss some noteworthy studies of the safety profile of current CAR T-cell therapy.

2.
Journal of Zhejiang University. Science. B ; (12): 310-321, 2019.
Article in English | WPRIM | ID: wpr-847047

ABSTRACT

Objective: Reactive oxygen species (ROS) are involved in a variety of biological phenomena and serve both deleterious and beneficial roles. ROS quantification and assessment of reaction networks are desirable but difficult because of their short half-life and high reactivity. Here, we describe a pro-oxidative model in a single human lung carcinoma SPC-A-1 cell that was created by application of extracellular H2O2 stimuli. Methods: Modified microfluidics and imaging techniques were used to determine O2•− levels and construct an O2•− reaction network. To elucidate the consequences of increased O2•− input, the mitochondria were given a central role in the oxidative stress mode, by manipulating mitochondria-interrelated cytosolic Ca2+ levels, mitochondrial Ca2+ uptake, auto-amplification of intra-cellular ROS and the intrinsic apoptotic pathway. Results and conclusions: Results from a modified microchip demonstrated that 1 mmol/L H2O2 induced a rapid increase in cellular O2•− levels (>27 vs. >406 amol in 20 min), leading to increased cellular oxidizing power (evaluated by ROS levels) and decreased reducing power (evaluated by glutathione (GSH) levels). In addition, we examined the dynamics of cytosolic Ca2+ and mitochondrial Ca2+ by confocal laser scanning microscopy and confirmed that Ca2+ stores in the endoplasmic reticulum were the primary source of H2O2-induced cytosolic Ca2+ bursts. It is clear that mitochondria have pivotal roles in determining how exogenous oxidative stress affects cell fate. The stress response involves the transfer of Ca2+ signals between organelles, ROS auto-amplification, mitochondrial dysfunction, and a caspase-dependent apoptotic pathway.

3.
Journal of Zhejiang University. Science. B ; (12): 291-299, 2019.
Article in English | WPRIM | ID: wpr-847045

ABSTRACT

The development of low-frequency ultrasound imaging technology and the improvement of ultrasound contrast agent production technology mean that they play an increasingly important role in tumor therapy. The interaction between ultrasound and microbubbles and their biological effects can transfer and release microbubbles carrying genes and drugs to target tissues, mediate the apoptosis of tumor cells, and block the embolization of tumor microvasculature. With the optimization of ultrasound parameters, the development of targeted microbubbles, and the emergence of various composite probes with both diagnostic and therapeutic functions, low-frequency ultrasound combined with microbubble contrast agents will bring new hope for clinical tumor treatment.

4.
Journal of Zhejiang University. Science. B ; (12): 391-398, 2019.
Article in English | WPRIM | ID: wpr-847039

ABSTRACT

Sirtuin 1 (SIRT1) is a protein deacetylase, which regulates various physiological activities by deacetylating different protein substrates. An increasing number of studies have revealed critical roles of SIRT1 in different aspects of cancers including metabolism, proliferation, genomic instability, and chemotherapy resistance. Depending on the protein targets in a certain oncogenic context, SIRT1 may play a unique role in each individual blood cancer subtype. Our previous work showed that activation of SIRT1 in primitive leukemia cells of acute myeloid leukemia (AML) and chronic myelogenous leukemia (CML) promotes disease maintenance. On the other hand, an SIRT1 agonist was shown to disrupt maintenance of myelodysplastic syndrome (MDS) stem cells and holds promise as a potential therapeutic approach. Herein, we present a concise summary of the different functions of SIRT1 in hematologic malignancies.

SELECTION OF CITATIONS
SEARCH DETAIL