Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
The Korean Journal of Physiology and Pharmacology ; : 509-516, 2014.
Article in English | WPRIM | ID: wpr-727692

ABSTRACT

Radiation therapy for variety of human solid tumors utilizes mechanism of cell death after DNA damage caused by radiation. In response to DNA damage, cytochrome c was released from mitochondria by activation of pro-apoptotic Bcl-2 family proteins, and then elicits massive Ca2+ release from the ER that lead to cell death. It was also suggested that irradiation may cause the deregulation of Ca2+ homeostasis and trigger programmed cell death and regulate death specific enzymes. Thus, in this study, we investigated how cellular Ca2+ metabolism in RKO cells, in comparison to radiation-resistant A549 cells, was altered by gamma (gamma)-irradiation. In irradiated RKO cells, Ca2+ influx via activation of NCX reverse mode was enhanced and a decline of [Ca2+]i via forward mode was accelerated. The amount of Ca2+ released from the ER in RKO cells by the activation of IP3 receptor was also enhanced by irradiation. An increase in [Ca2+]i via SOCI was enhanced in irradiated RKO cells, while that in A549 cells was depressed. These results suggest that gamma-irradiation elicits enhancement of cellular Ca2+ metabolism in radiation-sensitive RKO cells yielding programmed cell death.


Subject(s)
Humans , Calcium , Cell Death , Colorectal Neoplasms , Cytochromes c , DNA Damage , Homeostasis , Inositol 1,4,5-Trisphosphate Receptors , Metabolism , Mitochondria
2.
São Paulo; s.n; 2012. ilus, tab, graf.
Thesis in Portuguese | LILACS | ID: lil-691556

ABSTRACT

Compostos α-aminocarbonilícos como ácido 5-aminolevulínico (ALA) e aminoacetona (AA) apresentam um grande potencial pró-oxidante, pois sofrem reações de enolização e subseqüente oxidação aeróbica, com a formação de espécies radicalares de oxigênio, íons NH4+ e α-oxoaldeídos potencialmente citotóxicos. A α-aminocetona 1,4-diamino-2-butanona (DAB), um análogo da putrescina, é um agente microbicida de vários parasitas incluindo Trypanosoma cruzi. Acredita-se que o mecanismo de morte desencadeado por DAB nos parasitas seja por meio da inibição competitiva da ornitina descarboxilase (ODC), importante enzima do metabolismo de poliaminas, muito embora tenha sido observado de igual forma danos oxidativos nestes parasitas quando tratados com DAB. O objetivo deste trabalho é esclarecer o mecanismo de oxidação química de DAB e sua ação pró-oxidante à cultura de células de mamíferos (LLC-MK2 e RKO), assim como sua atividade microbicida contra tripomastigotas de Trypanosoma cruzi. Demonstramos aqui que DAB, quimicamente similar ao ALA e AA, sofre reação de oxidação catalisada por íons fosfato, e por íons de metais de transição como Fe(II) e Cu(II), resultando na formação de radicais de oxigênio, H2O2, NH4+, 2-oxo-4-aminobutanal como produto principal da oxidação de DAB e de compostos ciclicos de caracter pirrólico. Danos oxidativos observados em ferritina, apotransferrina e liposomos de cardiolipina e fosfatidilcolina (20:80) contribuem para a nossa hipótese de ação pró-oxidante de DAB. O tratamento de células de mamíferos das linhagens LLC-MK2 (IC50 1,5 mM, tratamento de 24 h) e RKO (IC50 0,3 mM, tratamento de 24 h) com DAB levou à alteração do balanço redox celular, à ativação de resposta antioxidante e ao desencadeamento de morte celular via apoptose e parada de ciclo celular. Em culturas de tripomastigotas de T. cruzi o tratamento com DAB culminou na redução da motilitidade e viabilidade destes parasitas (IC50 0,2 mM, tratamento de 4 h), assim como depleção do...


α-Aminocarbonyl componds such as 5-aminolevunilic acid (ALA) and aminoacetone (AA) have been shown to exhibit pro-oxidant properties. These compounds undergo phosphate-catalyzed enolization in physiological pH and subsequent aerobic oxidation, yielding reactive oxygen species, NH4+ ions and an α-oxoaldehyde highly cytotoxic. The α-aminoketone 1,4-diamino-2-butanone (DAB) is a putrescine analogue and a microbicidal agent to various parasites including Trypanosoma cruzi. The mechanism of DAB toxicity to these parasites is attributed to DAB competitive inhibition of ornithine decarboxylase (ODC), a key enzyme on polyamine biosynthesis, although it has also been shown DAB isto implicated in oxidative damage to these parasites. Our aim is to clarify the mechanism of DAB aerobic oxidation and of its putative pro-oxidant activity to mammalian cell cultures (LLC-MK2 and RKO cell linages) and to Trypanosoma cruzi trypomastigotes. Here we show that, similar to ALA and AA, DAB undergoes aerobic oxidation in presence of phosphate ions and of transition metal ions such as Fe(II) and Cu(II), yielding oxygen radicals, H2O2, NH4+ and 2-oxo-4-aminobutanal accompanied by its condensation cyclic products displaying pyrrolic characteristics. Oxidative alterations to ferritin, apotransferrin and liposomes of cardiolipin and phosphatidylcholine (20:80) were observed under DAB treatment strongly supporting our hypothesis of DAB pro-oxidative activity. DAB treatment of mammalian cultured cells LLC-MK2 (IC50 1.5 mM, 24 h incubation) and RKO (IC50 0.3 mM, 24 h incubation) resulted in redox imbalance, induction of antioxidant response, activation of apoptosis pathway and cell cycle arrest. DAB is shown here to trigger Trypanosoma cruzi trypomastigotes decreased parasite motility and viability (IC50 0.2 mM, 4 h incubation), as well as redox thiol imbalance parallel to increase TcSOD activity. In addition, DAB efficiently hampered host cell (LLC-MK2) invasion by trypomastigotes...


Subject(s)
Cell Physiological Phenomena , In Vitro Techniques , Mammals , Molecular Mechanisms of Pharmacological Action , Oxidants/toxicity , Putrescine/analysis , Trypanosoma cruzi , Reactive Oxygen Species/chemistry , Biochemical Reactions/analysis
3.
Cancer Research and Treatment ; : 183-190, 2005.
Article in English | WPRIM | ID: wpr-115164

ABSTRACT

PURPOSE: To reveal the interaction between beta-Lapachone (beta-lap) and ionizing radiation in causing cell death in RKO human colon adenocarcinoma cells, and to elucidate the potential usefulness of combined beta-lap treatment and radiotherapy for cancer treatment. MATERIALS AND METHODS: The cytotoxicities of various treatments were determined in vitro using clonogenic and apoptotic cell death. The changes in cell cycle distribution were studied using flow cytometry and an in vitro kinase assay. The tumor growth was studied using RKO tumors grown s.c. in the hind leg BALB/c- nuslc nude mice. RESULTS: beta-lap caused clonogenic cell death and rapid apoptosis in RKO cells in vitro, in a dose dependent manner. The repair of sublethal radiation damage was almost completely inhibited when cells were maintained in beta-lap during the interval between the two-dose irradiation. Flow cytometry study demonstrated that beta-lap induced apoptosis, independent of the cell cycle phase, and completely prohibited the induction of radiation- induced G2 arrest in irradiated cells. The prohibition of radiation-induced G2 arrest is unclear, but may be related to the profound suppression of the p53, p21 and cyclin B1-Cdc2 kinase activities observed in cells treated with beta-lap. The combination of beta-lap and radiation markedly enhanced the radiation-induced growth suppression of tumors. CONCLUSION: beta-lap is cytotoxic against RKO cells, both in vitro and in vivo, and also sensitized cells to ionizing radiation by inhibiting sublethal radiation damage repair. beta-lap is potentially useful as a potent anti-cancer chemotherapy drug and potent radiosensitizer against caner cells.


Subject(s)
Animals , Humans , Mice , Adenocarcinoma , Apoptosis , Cell Cycle , Cell Death , Colon , Cyclins , Drug Therapy , Flow Cytometry , Leg , Mice, Nude , Phosphotransferases , Radiation, Ionizing , Radiotherapy
SELECTION OF CITATIONS
SEARCH DETAIL