Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Nutrition Research and Practice ; : 370-378, 2015.
Article in English | WPRIM | ID: wpr-171619

ABSTRACT

BACKGROUND/OBJECTIVES: Athletes generally desire changes in body composition in order to enhance their athletic performance. Often, athletes will practice chronic energy restrictions to attain body composition changes, altering their energy needs. Prediction of resting metabolic rates (RMR) is important in helping to determine an athlete's energy expenditure. This study compared measured RMR of athletic and non-athletic adolescents with predicted RMR from commonly used prediction equations to identify the most accurate equation applicable for adolescent athletes. SUBJECTS/METHODS: A total of 50 athletes (mean age of 16.6 +/- 1.0 years, 30 males and 20 females) and 50 non-athletes (mean age of 16.5 +/- 0.5 years, 30 males and 20 females) were enrolled in the study. The RMR of subjects was measured using indirect calorimetry. The accuracy of 11 RMR prediction equations was evaluated for bias, Pearson's correlation coefficient, and Bland-Altman analysis. RESULTS: Until more accurate prediction equations are developed, our findings recommend using the formulas by Cunningham (-29.8 kcal/day, limits of agreement -318.7 and +259.1 kcal/day) and Park (-0.842 kcal/day, limits of agreement -198.9 and +196.9 kcal/day) for prediction of RMR when studying male adolescent athletes. Among the new prediction formulas reviewed, the formula included in the fat-free mass as a variable [RMR = 730.4 + 15 x fat-free mass] is paramount when examining athletes. CONCLUSIONS: The RMR prediction equation developed in this study is better in assessing the resting metabolic rate of Korean athletic adolescents.


Subject(s)
Adolescent , Humans , Male , Athletes , Athletic Performance , Bias , Body Composition , Calorimetry, Indirect , Energy Metabolism , Sports
2.
Genomics & Informatics ; : 263-271, 2013.
Article in English | WPRIM | ID: wpr-11246

ABSTRACT

We investigated the contribution of genetic variations of KLF5 to basal metabolic rate (BMR) and resting metabolic rate (RMR) and the inhibition of obesity in Korean children. A variation of KLF5 (rs3782933) was genotyped in 62 Korean children. Using multiple linear regression analysis, we developed a model to predict BMR in children. We divided them into several groups; normal versus overweight by body mass index (BMI) and low BMR versus high BMR by BMR. There were no differences in the distributions of alleles and genotypes between each group. The genetic variation of KLF5 gene showed a significant correlation with several clinical factors, such as BMR, muscle, low-density lipoprotein cholesterol, and insulin. Children with the TT had significantly higher BMR than those with CC (p = 0.030). The highest muscle was observed in the children with TT compared with CC (p = 0.032). The insulin and C-peptide values were higher in children with TT than those with CC (p= 0.029 vs. p = 0.004, respectively). In linear regression analysis, BMI and muscle mass were correlated with BMR, whereas insulin and C-peptide were not associated with BMR. In the high-BMR group, we observed that higher muscle, fat mass, and C-peptide affect the increase of BMR in children with TT (p < 0.001, p < 0.001, and p = 0.018, respectively), while Rohrer's index could explain the usual decrease in BMR (adjust r2 = 1.000, p < 0.001, respectively). We identified a novel association between TT of KLF5 rs3782933 and BMR in Korean children. We could make better use of the variation within KLF5 in a future clinical intervention study of obesity.


Subject(s)
Child , Humans , Alleles , Basal Metabolism , Body Composition , Body Mass Index , C-Peptide , Cholesterol , Genetic Variation , Genotype , Homozygote , Insulin , Linear Models , Lipoproteins , Muscles , Obesity , Overweight
3.
Journal of the Korean Dietetic Association ; : 157-168, 2007.
Article in Korean | WPRIM | ID: wpr-28684

ABSTRACT

The purposes of this study were to measure the resting metabolic rate(RMR) of 30-40 year old women and to compare it with values predicted using published equations. Body weight, height and body fat of subjects were measured. RMR was measured by two indirect calorimeter(method 1 and method 2). RMR was predicted using various equations. Average height, weight and body fat(%) of subjects were 158.6cm, 59.1kg and 30.9%, respectively. The RMR(1621.2+/-301.5 kcal/day) measured by portable indirect calorimeter(method 2) was significantly higher than RMR(1447.4+/-223.6 kcal/day) measured by typical indirect calorimeter(method 1). Comparison of measured RMR with predicted RMRs suggested that there was a least difference in RMR predicted by equation of Cunningham. According to RMSPEs(Root Mean Squared Prediction Errors), equations of Cunningham and body surface area were found to predict measured RMR(by method 1) most accurately (within 239.1kcal/day and 232.9kcal/day, respectively). The fat free mass and fat mass - adjusted correlation showed that measured RMR(by method 1) had negative relationships with muscle mass(r = -0.873) and fat free mass(r = -0.866). The equations of Cunningham and body surface area provide relatively accurate estimates of RMR when determining energy needs of 30-40 aged women. There are needs for development of RMR predicted equations that are derived from large samples of Korean.


Subject(s)
Female , Humans , Adipose Tissue , Body Surface Area , Body Weight
SELECTION OF CITATIONS
SEARCH DETAIL