ABSTRACT
Emerging evidence suggests that intron-detaining transcripts (IDTs) are a nucleus-detained and polyadenylated mRNA pool for cell to quickly and effectively respond to environmental stimuli and stress. However, the underlying mechanisms of detained intron (DI) splicing are still largely unknown. Here, we suggest that post-transcriptional DI splicing is paused at the Bact state, an active spliceosome but not catalytically primed, which depends on Smad Nuclear Interacting Protein 1 (SNIP1) and RNPS1 (a serine-rich RNA binding protein) interaction. RNPS1 and Bact components preferentially dock at DIs and the RNPS1 docking is sufficient to trigger spliceosome pausing. Haploinsufficiency of Snip1 attenuates neurodegeneration and globally rescues IDT accumulation caused by a previously reported mutant U2 snRNA, a basal spliceosomal component. Snip1 conditional knockout in the cerebellum decreases DI splicing efficiency and causes neurodegeneration. Therefore, we suggest that SNIP1 and RNPS1 form a molecular brake to promote spliceosome pausing, and that its misregulation contributes to neurodegeneration.
Subject(s)
Spliceosomes/metabolism , Introns/genetics , RNA Splicing , RNA, Messenger/genetics , Cell Nucleus/metabolismABSTRACT
OBJECTIVE: To determine the role of RNA-binding protein with serine-rich domain 1 (RNPS1) in uterine corpus endometrial carcinoma (UCEC), the role of RNPS1 knockdown in UCEC development in vitro and in vivo, and the relationship between RNPS1 and mismatch repair (MMR) in UCEC. METHODS: We predicted the potential function of RNPS1 using bioinformatics systems. The expression of RNPS1 in tissues and cell lines was analyzed by western blotting and immunohistochemistry. The expression of RNPS1 in MMR was assessed using bioinformatics and western blotting. The proliferation and apoptosis of UCEC cells were assessed under RNPS1 knockdown conditions, and RNPS1 regulation in MMR was detected by suppressing Notch signaling. Associations between RNPS1 and gene mutations in UCEC and prognosis were analyzed. RESULTS: The RNPS1 level was higher in UCEC tumors than in normal tissues and tumors or RL952 cells. Prognostic outcomes were worse when UCEC showed abundant RNPS1 expression. Lentiviral RNPS1 knockdown weakened tumor cell proliferation and suppressed biomarker expression, reduced the tumor volume, promoted apoptosis in vitro and in vivo, and inhibited UCEC development. Increased MutS homolog 2 (MSH2) and MutS homolog 6 (MSH6) levels in MMR after RNPS1 knockdown were reversed by inhibiting Notch signaling. Furthermore, RNPS1 was associated with mutations in NAA11, C2orf57, NUPR1, and other genes involved in UCEC prognosis. CONCLUSION: RNPS1 may regulate the expression levels of MSH2 and MSH6 in MMR, enhancing the proliferation, development, and prognosis of UCEC through a Notch signaling pathway in UCEC. Our study offers a new method and strategy for delaying UCEC development through modulating MMR.