Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 367-376, 1997.
Article in English | WPRIM | ID: wpr-727633

ABSTRACT

The effect of an organic peroxide, t-butylhydroperoxide (t-BHP), on glutamate uptake was studied in synaptosomes prepared from cerebral cortex. t-BHP inhibited the Na+/-dependent glutamate uptake with no change in the Na+/-independent uptake. This effect of t-BHP was not altered by addition of Ca2+ channel blockers (verapamil, diltiazem and nifedipine) or PLA2 inhibitors (dibucaine, butacaine and quinacrine). However, the effect was prevented by iron chelators (deferoxamine and phenanthroline) and phenolic antioxidants (N,N'-diphenyl-phenylenediamine, butylated hydroxyanisole, and butylated hydroxytoluene). At low concentrations (< 1.0 mM), t-BHP inhibited glutamate uptake without altering lipid peroxidation. Moreover, a large increase in lipid peroxidation by ascorbate/Fe2+ was not accompanied by an inhibition of glutamate uptake. The impairment of glutamate uptake by t-BHP was not intimately related to the change in Na+/-K+/-ATPase activity. These results suggest that inhibition of glutamate uptake by t-BHP is not totally mediated by peroxidation of membrane lipid, but is associated with direct interactions of glutamate transport proteins with t-BHP metabolites. The Ca2+ influx through Ca2+ channel or PLA2 activation may not be involved in the t-BHP inhibition of glutamate transport.


Subject(s)
Antioxidants , Brain , Butylated Hydroxyanisole , Carrier Proteins , Cerebral Cortex , Chelating Agents , Diltiazem , Glutamic Acid , Iron , Lipid Peroxidation , Membranes , Phenol , Synaptosomes , tert-Butylhydroperoxide
SELECTION OF CITATIONS
SEARCH DETAIL