Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Indian J Exp Biol ; 2022 Sep; 60(9): 672-680
Article | IMSEAR | ID: sea-222535

ABSTRACT

Proteases are ubiquitously present and are among the largest groups of commercially important enzymes. Here, we investigated a wood-rot basidiomycete Trametes versicolor (L.) Lloyd [Syn. Coriolus versicolor (L.) Quél.; Polyporus versicolor (L.) Fr.] as a source of the enzyme serine protease, its production, and optimized to obtain a higher yield of the enzyme.. The significant variables with optimized values for maximum production of the enzyme were temperature (30?C), incubation time (120 h) and wheat bran (10 g). The yield increased by 30.76% by statistically optimizing the media. The optimized temperature and pH for the maximum protease activity was 50?C and pH 7.0, respectively. The enzyme was purified through ion exchange (using DEAE cellulose 52 resin) and gel filtration chromatography (using Superdex 200 column). The purified enzyme had a retention time of 7 min in RP-HPLC. The enzyme was stable at a broad range of temperature (30-60?C) and pH (5.0-8.0) with a half-life of 58.72 min, Vmax of 37.17 ?M min/mL and Km of 0.657 mg/mL. Its activity was enhanced by Na+, Ca2+, Mg2+ ions and SDS surfactant. These properties make this enzyme a valuable candidate for industrial applications

2.
Indian J Exp Biol ; 2022 Sep; 60(9): 681-688
Article | IMSEAR | ID: sea-222533

ABSTRACT

Biofuel is one of the best ways to reduce our dependence on fossil fuels. Ever since commercial biodiesel production began, waste glycerol, the biodiesel byproduct, has gained researchers’ interest, especially its recycling. Here, we explored using glycerol residue (carbon source) as a substrate in the fermentation process for ethanol production by Escherichia coli K12 in anaerobic conditions. The factors affecting the ethanol production was optimised by response surface methodology (RSM). Significant variables that impact the ethanol concentration were pH, temperature and the substrate, with a statistically significant effect (P <0.05) on ethanol formation. The significant factor was analyzed by the Box-Behnken design. The optimum conditions for bioethanol formation using glycerol as substrate was obtained at pH 7 and temperature 37°C. The ethanol productivity was 0.77 g/L/h. The ethanol concentration of 9.2 g/L achieved from glycerol residue was close to the theoretical value with the fermentation achieved at optimised terms.

3.
Journal of Zhejiang University. Science. B ; (12): 611-627, 2020.
Article in English | WPRIM | ID: wpr-1010541

ABSTRACT

Immunoglobulin Y (IgY) is an effective orally administered antibody used to protect against various intestinal pathogens, but which cannot tolerate the acidic gastric environment. In this study, IgY was microencapsulated by alginate (ALG) and coated with chitooligosaccharide (COS). A response surface methodology was used to optimize the formulation, and a simulated gastrointestinal (GI) digestion (SGID) system to evaluate the controlled release of microencapsulated IgY. The microcapsule formulation was optimized as an ALG concentration of 1.56% (15.6 g/L), COS level of 0.61% (6.1 g/L), and IgY/ALG ratio of 62.44% (mass ratio). The microcapsules prepared following this formulation had an encapsulation efficiency of 65.19%, a loading capacity of 33.75%, and an average particle size of 588.75 μm. Under this optimum formulation, the coating of COS provided a less porous and more continuous microstructure by filling the cracks on the surface, and thus the GI release rate of encapsulated IgY was significantly reduced. The release of encapsulated IgY during simulated gastric and intestinal digestion well fitted the zero-order and first-order kinetics functions, respectively. The microcapsule also allowed the IgY to retain 84.37% immune-activity after 4 h simulated GI digestion, significantly higher than that for unprotected IgY (5.33%). This approach could provide an efficient way to preserve IgY and improve its performance in the GI tract.


Subject(s)
Alginic Acid/chemistry , Chitin/chemistry , Chitosan , Delayed-Action Preparations , Digestion , Drug Compounding , Drug Liberation , Gastrointestinal Tract/metabolism , Immunoglobulins/metabolism , Oligosaccharides
4.
Journal of Zhejiang University. Science. B ; (12): 611-627, 2020.
Article in English | WPRIM | ID: wpr-846941

ABSTRACT

Immunoglobulin Y (IgY) is an effective orally administered antibody used to protect against various intestinal pathogens, but which cannot tolerate the acidic gastric environment. In this study, IgY was microencapsulated by alginate (ALG) and coated with chitooligosaccharide (COS). A response surface methodology was used to optimize the formulation, and a simulated gastrointestinal (GI) digestion (SGID) system to evaluate the controlled release of microencapsulated IgY. The microcapsule formulation was optimized as an ALG concentration of 1.56% (15.6 g/L), COS level of 0.61% (6.1 g/L), and IgY/ALG ratio of 62.44% (mass ratio). The microcapsules prepared following this formulation had an encapsulation efficiency of 65.19%, a loading capacity of 33.75%, and an average particle size of 588.75 µm. Under this optimum formulation, the coating of COS provided a less porous and more continuous microstructure by filling the cracks on the surface, and thus the GI release rate of encapsulated IgY was significantly reduced. The release of encapsulated IgY during simulated gastric and intestinal digestion well fitted the zero-order and first-order kinetics functions, respectively. The microcapsule also allowed the IgY to retain 84.37% immune-activity after 4 h simulated GI digestion, significantly higher than that for unprotected IgY (5.33%). This approach could provide an efficient way to preserve IgY and improve its performance in the GI tract.

5.
Braz. J. Pharm. Sci. (Online) ; 54(spe): e01006, 2018. tab, graf
Article in English | LILACS | ID: biblio-974425

ABSTRACT

According to Quality by Design (QbD) concept, quality should be built into product/method during pharmaceutical/analytical development. Usually, there are many input factors that may affect quality of product and methods. Recently, Design of Experiments (DoE) have been widely used to understand the effects of multidimensional and interactions of input factors on the output responses of pharmaceutical products and analytical methods. This paper provides theoretical and practical considerations for implementation of Design of Experiments (DoE) in pharmaceutical and/or analytical Quality by Design (QbD). This review illustrates the principles and applications of the most common screening designs, such as two-level full factorial, fractionate factorial, and Plackett-Burman designs; and optimization designs, such as three-level full factorial, central composite designs (CCD), and Box-Behnken designs. In addition, the main aspects related to multiple regression model adjustment were discussed, including the analysis of variance (ANOVA), regression significance, residuals analysis, determination coefficients (R2, R2-adj, and R2-pred), and lack-of-fit of regression model. Therefore, DoE was presented in detail since it is the main component of pharmaceutical and analytical QbD.


Subject(s)
Research Design/trends , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/standards , Total Quality Management
6.
Braz. arch. biol. technol ; 61: e18160347, 2018. tab, graf
Article in English | LILACS | ID: biblio-974080

ABSTRACT

ABSTRACT To seek a simple, rapid and sensitive Coprinus cinereus Peroxidase (CIP) activity assay, a convenient one-factor-at-a-time (OFAT) method and a response surface methodology (RSM) were used. The recombinant CIP expressed in Pichia pastoris was purified with the Ni-NTA spin column. Based on the results of catalytic efficiency (kcat/Km) analysis, 2,2'-azinobis (ethylbenzthiazoline -6-sulfonate) (ABTS) was selected as the optimal enzyme substrate. Results of the OFAT method showed that enzymatic reaction performed in 0.1 mol/L sodium acetate (pH 5.0) buffer in a 200-µl reaction mixture containing 0.5 mmol/L ABTS, 10 mmol/L hydrogen peroxide (H2O2), 49.7 ng CIP at 25°C gave an average CIP activity of 88 U/mL. The ABTS and H2O2 concentrations were then further optimized to improve the sensitivity of the assay. To do that, RSM was conducted through central composite design, and a reduced quadratic model with good fit regression equation was generated. ANOVA analysis of this model indicated that the concentrations of ABTS and H2O2 and their interaction had significant impact on the assay sensitivity. The optimal reaction mixture was determined to include an initial ABTS concentration of 0.82 mmol/L 49.7 ng CIP and 16.36 mmol/L H2O2, and the activity under this condition was determined to be 138.89 U/mL.

7.
Journal of the Korean Dietetic Association ; : 19-30, 2018.
Article in Korean | WPRIM | ID: wpr-766361

ABSTRACT

The primary objective of this study was to develop an optimal composite recipe for ginger extract candy with Salicornia herbacea L., for consumption during the first trimester of pregnancy. The secondary objective was to examine quality characteristics of the candy. The physical and mechanical properties and sensory properties for pregnant women in were measured, and these values were applied to mathematical models. Time of stirring water solution, saltiness, pH, and redness of the candy increased as concentrations of ginger juice did, but variations in pH were not significant. The hardness values of the candy ranged from 3,063.90 to 5,681.65 dyne/cm³. The average values of sweetness and time stirring the water solution were 5.36% and 14.1 minutes, respectively. However, hardness and sweetness stirring water solution were not significant. The range of sensory values of color (P < 0.01), flavor (P < 0.05), sweetness, saltiness, spiciness, and overall quality (P < 0.05) ranged from were 3.73~5.32, 4.05~5.05, 3.67~5.14, 3.59~5.09, 3.55~5.15, and 3.32~5.45, respectively. Results suggest that ginger extract candy with Salicornia herbacea L. should be comprised of 7.37 g of ginger juice and 1.77 g of salt. Consequently, it could be a functional candy for pregnant women.


Subject(s)
Female , Humans , Pregnancy , Candy , Chenopodiaceae , Zingiber officinale , Hardness , Hydrogen-Ion Concentration , Models, Theoretical , Morning Sickness , Pregnancy Trimester, First , Pregnant Women , Water
8.
Malaysian Journal of Microbiology ; : 164-171, 2018.
Article in English | WPRIM | ID: wpr-732378

ABSTRACT

@#Aims:This study was carried out to optimize the fermentation conditions using statistical approach for polyhydroxyalkanoate(PHA) production by a local isolate, Burkholderia cepaciaBPT1213, in the shake flask system.Methodology and results:Throughout this study, B. cepaciaBPT1213 was grown in minimal salt medium (MSM) supplemented with 2% of waste glycerol (86.70% purity).The strain can produce up to 1.33 g/L cell dry weight (CDW) with 22.21% of PHA content, thus giving a total PHA concentration 0.30 g/L before optimization. A factorial design experiment that was carried out showed all parameters KH2PO4, Na2HPO4·2H2O, carbon-to-nitrogen ratio (C/N), initial pH of medium, and temperature significantly affected the growth (cell dry weight, CDW) and PHA content. Response surface methodology (RSM) using central composite design (CCD) was then applied to optimize these parameters. The optimum conditions suggested were at 2.5 g/L KH2PO4, 4.5 g/L Na2HPO4·2H2O, 30 (g/g) C/N ratio, initial medium pH of 8.5 and 37 °C cultivation temperature, with a predicted CDW of 3.43 g/L and PHA content of 45.71% contributing to 1.57 g/L total PHA concentration. The verification experiment resulted in 3.60 g/L of CDW with 48.08% of PHA content contributing to 1.73 g/L total PHA concentration.Conclusion, significance and impact of study:The statistical approach using factorial design and RSM have succeeded in increasing the production of PHA by B. cepaciaBPT1213 using waste glycerol as the sole carbon source which is a promising renewable and cheaper feedsto

9.
Ciênc. agrotec., (Impr.) ; 41(6): 701-712, Nov.-Dec. 2017. tab, graf
Article in English | LILACS | ID: biblio-890660

ABSTRACT

ABSTRACT Due to their nutraceutical properties, the fruits of the species Vaccinium meridionale, which inhabit the Andean region, are of scientific interest. Microwave-assisted extraction has been applied to different vegetal matrices for to extract efficiently polyphenolic compounds. In this work we study in microwave assisted extraction processes, the effect on the extraction of total polyphenols in dried fruits of Vaccinium meridionale, using response surface methodology. The main objective of this research was to analyze the relationships between power, temperature, solid-liquid ratio, time and ethanol concentration in aqueous media on the effectiveness of total polyphenols recovery in dry fruits of Vaccinium meridionale. A central composite design face-centered with three levels for each variable was used: P = 300 - 900 W; T = 70 -110 °C; L:Srat. = 30:1 - 70:1 w/w; t = 5 - 15 min; [EtOH] = 0 - 80%. In this sense, the effect of the input variables on the recovery of total polyphenols, the optimization process for maximum extraction, and the comparison to other solid-liquid extractions in terms of quantity of total polyphenols, are reported. It was found that the significant variables in the extraction process were ethanol concentration, temperature and time; the best yields were obtained in the range [EtOH] = 44 - 49%, T = 110 °C, and t = 10 - 15 min. In terms of quantity, time and consumption of energy, microwave-assisted extraction technique is more efficient than other solid-liquid extraction processes for the extraction of total polyphenols.


RESUMO Devido a suas propriedades nutracêuticas em termos do conteúdo de polifenóis totais, os frutos da espécie andina Vaccinium meridionale tem associado um grande interesse cientifico. A extração assistida por microondas tem sido utilizada em diferentes matrizes vegetais para a remoção de forma eficiente de compostos polifenólicos que apresentam uma atividade biológica. Neste artigo são apresentados os principais resultados experimentais obtidos em diferentes processos de extração assistida por microondas, com respeito à quantia de polifenóis totais removidos em frutos secos de Vaccinium meridionale por meio da metodologia da superfície de resposta. O principal objetivo desta pesquisa foi analisar as relações entre as variáveis independentes da potência, a temperatura, a relação sólido-líquido, tempo e concentração de etanol com respeito à quantidade polifenóis totais extraídos de frutos secos de Vaccinium meridionale. Foi utilizado um desenho composto centrado nas caras com três diferentes níveis para cada variável: P = 300 - 900 W; T = 70 -110 °C; L:Srat. = 30:1 - 70:1 w/w; t = 5 - 15 min; [EtOH] = 0 - 80%. Foi utilizado o método de Folin-Ciocalteu para a quantificação de polifenóis totais com ácido gálico como molécula de referência. Neste sentido, foi reportado neste trabalho o efeito dos fatores de entrada com respeito a quantidade de polifenóis totais removidos, o processo de optimização para obter a máxima remoção possível, e também uma comparação dos resultados experimentais com outros processos de extração sólido-líquido. Foi achado que a concentração de etanol, a temperatura e o tempo foram a variáveis mais importantes no processo de extração. A máxima quantidade de recuperação achada neste trabalho foi obtida no intervalo [EtOH] = 44 - 49%, T = 110 °C e t = 10 - 15 min. Em termos de quantidade, tempo e gasto de energia, a extração assistida por microondas é uma técnica eficiente para a remoção de polifenóis totais em frutos secos de Vaccinium meridionale.

10.
Braz. J. Pharm. Sci. (Online) ; 53(2): e15223, 2017. tab, graf
Article in English | LILACS | ID: biblio-839489

ABSTRACT

ABSTRACT This study was to investigate the neuroprotective effect of curcumin against inflammation-mediated dopaminergic neurodegeneration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mice model of Parkinson's disease (PD). Curcumin loaded sodium hyaluronate based mucoadhesive microemulsion (CMME) was developed by using Box Behnken design of Response surface method (RSM) and was characterized. Male C57BL/6 mice were first treated with four intraperitoneal injections of MPTP (20 mg/kg of body weight) at 2 h intervals followed CMME intranasal administration for 14 days at 2.86 mg of curcumin/kg of body weight per once a day. Optimal CMME containing 3% Capmul MCM as oil phase, 37 % of Accenon CC and Transcutol HP at 2.5:1 ratio and 0.5% sodium hyaluronate was stable, non-ciliotoxic with 57.66 nm±3.46 as average globule size. PdI value (0.190 ± 0.19) and TEM result depicted the narrow size distribution of CMME.All three independent variables had a significant effect (p<0.05) on the responses and the designed model was significant for all taken responses. In-vivo results revealed significant reduction of MPTP-mediated dopamine depletion after nasal administration of CMME. MPTP intoxication significantly decreased striatal DA content to 21.29 % which was then elevated to 55.37% after intranasal curcumin treatment. Significant improvement in motor performance as well as gross behavioural activity of mice was observed from rota-rod and open field test findings. Findings of the investigation revealed the symptomatic neuroprotection of curcumin against MPTP-induced neurodegradation in the striatum and hence could be considered as a promising approach to treat PD.


Subject(s)
Animals , Male , Rats , Parkinson Disease/prevention & control , Curcumin/adverse effects , Administration, Intranasal/statistics & numerical data , Methodology as a Subject , Nasal Mucosa
11.
Braz. J. Pharm. Sci. (Online) ; 53(4): e17293, 2017. tab, graf, ilus
Article in English | LILACS | ID: biblio-889435

ABSTRACT

ABSTRACT A novel, accurate, precise and economical stability indicating Reverse Phase-High Performance Liquid Chromatography (RP-HPLC) method, was developed and validated for the quantitative determination of ubidecarenone (UDC) in bulk drug, UDC marketed formulation and UDC loaded cubosomes (CBMs) nanocarriers through Response surface methodology (RSM) design with three factors and three levels was performed to optimize the chromatographic variables followed by forced degradation studies of UDC were performed to detect degradation peak. RP-HPLC separation was achieved using mobile phase consisting of Acetonitrile:Tetrahydrofuran:Deionised water in the ratio 55:42:3 and a flow rate of 1.0 mL/min was optimized with a standard retention time (Rt) of 2.15 min, through experiment. The method was found linear in the concentration range of 5-100 µg/mL with a regression coefficient of 0.999. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 3.04 µg/mL and 9.11 µg/mL, respectively.


Subject(s)
Ubiquinone/analysis , Chromatography, Reverse-Phase/methods , Pharmaceutical Preparations/administration & dosage
12.
Journal of the Korean Dietetic Association ; : 14-26, 2017.
Article in Korean | WPRIM | ID: wpr-35065

ABSTRACT

The purpose of this study was to determine the optimal recipe of rice cookies with two different amounts of Stevia rebaudiana leaf and grape seed oil, using a central composite design (CCD). In addition, mixing conditions of rice cookies were optimized by sensory evaluation and mechanical and physicochemical analysis using response surface methodology (RSM). RSM was used to obtain 10 experimental points (including two replicates of Stevia rebaudiana leaf and Grape seed oil), and the formulation of Stevia rebaudiana leaf added rice cookies was optimized using rheology. The results of mechanical and physicochemical analysis showed significant values for lightness, redness, yellowness, hardness, spread factor, loss rate, leavening rate, sweetness, moisture, pH, and density (P<0.001), results of the sensory evaluation showed significant values for color, flavor, taste, texture, appearance, and overall quality (P<0.05). As a results, optimal sensory ratio was found to be 1.98 g of Stevia rebaudiana leaf and 37.94 g of Grape seed oil.


Subject(s)
Hardness , Hydrogen-Ion Concentration , Rheology , Stevia , Vitis
13.
Indian J Exp Biol ; 2016 Jan; 54(1): 72-75
Article in English | IMSEAR | ID: sea-178624

ABSTRACT

The production of α-galactosidase from the wild fungal strain Aspergillus foetidus MTCC 6322 using solid state fermentation (SSF), its characterization, and its efficacy in the hydrolysis of soymilk using response surface methodology were studied. The optimum conditions for production of α-galactosidase by SSF were: wheat bran (10 g), moisture content (64%), inoculum volume (1.0 mL; 6 × 107 spores/mL) with a yield of 4.1 × 103 units per gram dry substrate (U/gds) at 96 h. The enzyme showed optimum activity at pH 6.0, temperature 40°C, pH stability between 5.0-8.0, and temperature stability between 30-40°C. The enzyme was stable in the presence of trypsin, lipase, and collagenase and it showed susceptibility of the substrates such as raffinose, melibiose, guar gum and soymilk to hydrolysis in varying degrees. The optimized conditions for soymilk hydrolysis were: soymilk (10 mL) from defatted soybean meal (1.5%), α-galactosidase (0.15 UmL-1) at 30°C, pH 6.0 and duration of 1 h.

14.
Braz. arch. biol. technol ; 59: e16150043, 2016. tab, graf
Article in English | LILACS | ID: biblio-951411

ABSTRACT

ABSTRACT: The extraction of essential oils obtained by the hydrodistillation of needles/twigs waste of Pinus taeda L. was optimized by applying response surface methodology (RSM), with 24 full factorial design, in order to improve oil essential production, and aggregate value to the production chain of pine wood. Through the model it was possible to ascertain the influence of the variables in the average amount of essential oil (0.1032 mL), being the variables analyzed: biomass - Bm (x1), extraction time - ET (x2), Bm:ET (x1x2) and sample size - SS: drying times - DT (x3x4). Only linear terms (biomass and extraction time) and your interaction demonstrated significant positive values (0.0344, 0.0206 and 0.0131). The major components of the essential oil identified by GC-MS were: β-phellandrene: (30.39 and 22.44%), tricyclene (26.14 and 20.46%), β-myrcene (14.32 and 11.50%), β-pinene (22.49 and 1.43%) and α-pinene (0.25 and 11.26%) in the years 2011 and 2012, respectively. Our results show that the essential oil obtained from P. taeda represents a way of using some of the waste generated by the timber industry. The process of obtaining doesn't require treatments such as controlled drying or size reduction of the sample, indicating that it can be used in an industrial scale.

15.
Indian J Exp Biol ; 2015 Jun; 53(6): 356-363
Article in English | IMSEAR | ID: sea-158505

ABSTRACT

Here, we described the production of a cellulase-free alkaline xylanase from Bacillus pumilus MTCC 5015 by submerged fermentation and its application in biobleaching. Various process parameters affecting xylanase production by B. pumilus were optimized by adopting a Plackett-Burman design (PBD) as well as Response surface methodology (RSM). These statistical methods aid in improving the enzyme yield by analysing the individual crucial components of the medium. Maximum production was obtained with 4% yeast extract, 0.08% magnesium sulphate, 30 h of inoculum age, incubation temperature of 33.5 °C and pH 9.0. Under optimized conditions, the xylanase activity was 372 IU/ml. Media engineering improved a 5-fold increase in the enzyme production. Scanning electron microscopy (SEM) showed significant changes on the surface of xylanase treated pulps as a result of xylan hydrolysis. Increased roughness of paper carton fibres was apparent in scanning electron micrograph due to opening of the micro fibrils present on the surface by xylanase action. The untreated pulp did not show any such change. These results demonstrated that the B. pumilus MTCC 5015 xylanase was effective in bio-bleaching of paper carton.


Subject(s)
Bacillus/chemistry , Bacillus/classification , Biotechnology , Cellulose/metabolism , Fermentation , Paper , Xylosidases/biosynthesis , Xylosidases/chemical synthesis
16.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 222-231, 2015.
Article in English | WPRIM | ID: wpr-812153

ABSTRACT

The present study was designed to optimize the processing of Fructus Arctii by response surface methodology (RSM). Based on single factor studies, a three-variable, three-level Box-Behnken design (BBD) was used to monitor the effects of independent variables, including processing temperature and time, on the dependent variables. Response surfaces and contour plots of the contents of total lignans, chlorogenic acid, arctiin, and arctigenin were obtained through ultraviolet and visible (UV-Vis) monitoring and high performance liquid chromatography (HPLC). Fructus Arctii should be processed under heating in a pot at 311 °C, medicine at 119 °C for 123s with flipping frequently. The experimental values under the optimized processing technology were consistent with the predicted values. In conclusion, RSM is an effective method to optimize the processing of traditional Chinese medicine (TCM).


Subject(s)
Arctium , Chemistry , Chemistry, Pharmaceutical , Methods , Chlorogenic Acid , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal , Chemistry , Furans , Glucosides , Hot Temperature , Lignans , Surface Properties , Technology, Pharmaceutical , Methods
17.
Braz. arch. biol. technol ; 57(6): 962-970, Nov-Dec/2014. tab, graf
Article in English | LILACS | ID: lil-730391

ABSTRACT

Different culture conditions viz. additional carbon and nitrogen content, inoculum size and age, temperature and pH of the mixed culture of Bifidobacterium bifidum and Lactobacillus acidophilus were optimized using response surface methodology (RSM) and artificial neural network (ANN). Kinetic growth models were fitted for the cultivations using a Fractional Factorial (FF) design experiments for different variables. This novel concept of combining the optimization and modeling presented different optimal conditions for the mixture of B. bifidum and L. acidophilus growth from their one variable at-a-time (OVAT) optimization study. Through these statistical tools, the product yield (cell mass) of the mixture of B. bifidum and L. acidophilus was increased. Regression coefficients (R2) of both the statistical tools predicted that ANN was better than RSM and the regression equation was solved with the help of genetic algorithms (GA). The normalized percentage mean squared error obtained from the ANN and RSM models were 0.08 and 0.3%, respectively. The optimum conditions for the maximum biomass yield were at temperature 38°C, pH 6.5, inoculum volume 1.60 mL, inoculum age 30 h, carbon content 42.31% (w/v), and nitrogen content 14.20% (w/v). The results demonstrated a higher prediction accuracy of ANN compared to RSM.

18.
Braz. arch. biol. technol ; 57(1): 15-22, Jan.-Feb. 2014. ilus, graf, tab
Article in English | LILACS | ID: lil-702564

ABSTRACT

The culture conditions viz. additional carbon and nitrogen content, inoculum size, age, temperature and pH of Lactobacillus acidophilus were optimized using response surface methodology (RSM) and artificial neural network (ANN). Kinetic growth models were fitted to cultivations from a Box-Behnken Design (BBD) design experiments for different variables. This concept of combining the optimization and modeling presented different optimal conditions for L. acidophilus growth from their original optimization study. Through these statistical tools, the product yield (cell mass) of L. acidophilus was increased. Regression coefficients (R²) of both the statistical tools predicted that ANN was better than RSM and the regression equation was solved with the help of genetic algorithms (GA). The normalized percentage mean squared error obtained from the ANN and RSM models were 0.06 and 0.2%, respectively. The results demonstrated a higher prediction accuracy of ANN compared to RSM.

19.
Journal of the Korean Dietetic Association ; : 212-226, 2014.
Article in Korean | WPRIM | ID: wpr-210254

ABSTRACT

The purpose of this study was to determine the optimal composite recipe of rice muffin using three different amounts of Chinese artichoke (Stachys sieboldii MIQ) powder, brown sugar, and egg. Response surface methodology (RSM) was used to obtain 16 experimental points (including three replicates of Chinese artichoke powder, brown sugar, and egg), and the Chinese artichoke rice muffin formulation was optimized using rheology. The results of the sensory evaluation showed very significant values for color, texture, sweetness, and overall quality (P<0.05). The results of the color, texture, and chemical analyses showed significant values for crumb redness (P<0.01), crumb yellowness (P<0.05), crust redness (P<0.05), crust yellowness (P<0.001), crust lightness (P<0.05), adhesiveness (P<0.01), springiness (P<0.001), gumminess (P<0.01), cohesiveness (P<0.05), moisture content (P<0.05), and sweetness (P<0.05). As a result, optimum formulations obtained by numerical and graphical methods were found to be 8.28 g of Chinese artichoke powder, 66.20 g of brown sugar, 111.72 g of sticky rice powder, 30 g of rice powder, and 59.37 g of egg.


Subject(s)
Humans , Adhesiveness , Asian People , Cynara scolymus , Ovum , Rheology
20.
Chinese Pharmaceutical Journal ; (24): 1983-1986, 2012.
Article in Chinese | WPRIM | ID: wpr-860524

ABSTRACT

OBJECTIVE: To optimize the processing technology of Cirsium japonicum DC by response surface methodology (RSM). METHODS: Based on single factor studies, a three-variable, three-level Box-Benhnken experimental design was used to monitor the effects of independent variables like time, temperature, and weight on the dependent variable, yield of flavonoids when Cirsium japonicum DC were processed. Response surface and contour plots with flavonoids' yield as a function were obtained with the help of HPLC. RESULTS: The optimum conditions were processing time 13 min, processing temperature (310 ± 10)°C, and raw material weight 100 g. CONCLUSION: RSM is an effective technology to optimize the processing traditional Chinese medicine.

SELECTION OF CITATIONS
SEARCH DETAIL