Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Protein & Cell ; (12): 360-378, 2022.
Article in English | WPRIM | ID: wpr-929162

ABSTRACT

Rice stripe virus (RSV) transmitted by the small brown planthopper causes severe rice yield losses in Asian countries. Although viral nuclear entry promotes viral replication in host cells, whether this phenomenon occurs in vector cells remains unknown. Therefore, in this study, we systematically evaluated the presence and roles of RSV in the nuclei of vector insect cells. We observed that the nucleocapsid protein (NP) and viral genomic RNAs were partially transported into vector cell nuclei by utilizing the importin α nuclear transport system. When blocking NP nuclear localization, cytoplasmic RSV accumulation significantly increased. In the vector cell nuclei, NP bound the transcription factor YY1 and affected its positive regulation to FAIM. Subsequently, decreased FAIM expression triggered an antiviral caspase-dependent apoptotic reaction. Our results reveal that viral nuclear entry induces completely different immune effects in vector and host cells, providing new insights into the balance between viral load and the immunity pressure in vector insects.


Subject(s)
Animals , Cell Nucleus , Hemiptera/metabolism , Insect Vectors/genetics , Insecta , Nucleocapsid Proteins/metabolism , Oryza , Plant Diseases , Tenuivirus/metabolism , Virus Replication
2.
J Biosci ; 2019 Sep; 44(4): 1-14
Article | IMSEAR | ID: sea-214425

ABSTRACT

Stable transgenic rice line (named KRSV-1) with strong resistance against rice stripe virus was generated using the genesequence of disease-specific protein by RNA interference. Comprehensive safety assessment of transgenic plants has turnedinto a significant field of genetic modification food safety. In this study, a safety assessment of KRSV-1 was carried out in astepwise approach. The molecular analysis exhibited that KRSV-1 harbored one copy number of transgene, which wasintegrated into the intergenic non-coding region of chromosome 2 associated with inter-chromosomal translocations of 1.6-kb segments of chromosome 8. Then, transcriptomics and proteomics analyses were carried out to detect the unintendedeffects as a result of the integration of the transgene. Although 650 dramatically differentially expressed genes (DDEGs)and 357 differentially expressed proteins were detected between KRSV-1 and wild-type (WT) by transcriptomics andproteomics analyses, no harmful members in the form of toxic proteins and allergens were observed. Encouragingly, thenutritional compositions of seeds from KRSV-1 were comparable with WT seeds. The results of this entire study ofmolecular analysis, transcriptome and proteome profile of KRSV-1 revealed that no detrimental changes in the form of toxicproteins and allergens were detected in the transgenic rice line due to the integration of the transgene.

3.
Journal of Zhejiang University. Science. B ; (12): 343-354, 2019.
Article in English | WPRIM | ID: wpr-1010465

ABSTRACT

Rice stripe virus (RSV) causes dramatic losses in rice production worldwide. In this study, two monoclonal antibodies (MAbs) 16E6 and 11C1 against RSV and a colloidal gold-based immunochromatographic strip were developed for specific, sensitive, and rapid detection of RSV in rice plant and planthopper samples. The MAb 16E6 was conjugated with colloidal gold and the MAb 11C1 was coated on the test line of the nitrocellulose membrane of the test strip. The specificity of the test strip was confirmed by a positive reaction to RSV-infected rice plants and small brown planthopper (SBPH), and negative reactions to five other rice viruses, healthy rice plants, four other vectors of five rice viruses, and non-viruliferous SBPH. Sensitivity analyses showed that the test strip could detect the virus in RSV-infected rice plant tissue crude extracts diluted to 1:20 480 (w/v, g/mL), and in individual viruliferous SBPH homogenate diluted to 1:2560 (individual SPBH/μL). The validity of the developed strip was further confirmed by tests using field-collected rice and SBPH samples. This newly developed test strip is a low-cost, fast, and easy-to-use tool for on-site detection of RSV infection during field epidemiological studies and paddy field surveys, and thus can benefit decision-making for RSV management in the field.


Subject(s)
Antibodies, Monoclonal/chemistry , China , Chromatography, Affinity/methods , Collodion/chemistry , Colloids/chemistry , Gold Colloid/chemistry , Materials Testing , Membranes, Artificial , Oryza/virology , Plant Diseases/virology , Reproducibility of Results , Sensitivity and Specificity , Species Specificity , Tenuivirus/isolation & purification
4.
Journal of Zhejiang University. Science. B ; (12): 343-354, 2019.
Article in English | WPRIM | ID: wpr-847050

ABSTRACT

Rice stripe virus (RSV) causes dramatic losses in rice production worldwide. In this study, two monoclonal antibodies (MAbs) 16E6 and 11C1 against RSV and a colloidal gold-based immunochromatographic strip were developed for specific, sensitive, and rapid detection of RSV in rice plant and planthopper samples. The MAb 16E6 was conjugated with colloidal gold and the MAb 11C1 was coated on the test line of the nitrocellulose membrane of the test strip. The specificity of the test strip was confirmed by a positive reaction to RSV-infected rice plants and small brown planthopper (SBPH), and negative reactions to five other rice viruses, healthy rice plants, four other vectors of five rice viruses, and non-viruliferous SBPH. Sensitivity analyses showed that the test strip could detect the virus in RSV-infected rice plant tissue crude extracts diluted to 1:20480 (w/v, g/mL), and in individual viruliferous SBPH homogenate diluted to 1:2560 (individual SPBH/µL). The validity of the developed strip was further confirmed by tests using field-collected rice and SBPH samples. This newly developed test strip is a low-cost, fast, and easy-to-use tool for on-site detection of RSV infection during field epidemiological studies and paddy field surveys, and thus can benefit decision-making for RSV management in the field.

5.
J Biosci ; 2013 Sept; 38(3): 573-581
Article in English | IMSEAR | ID: sea-161844

ABSTRACT

A twin T-DNA system is a convenient strategy for creating selectable marker-free transgenic plants. The standard transformation plasmid, pCAMBIA 1300, was modified into a binary vector consisting of two separate T-DNAs, one of which contained the hygromycin phosphotransferase (hpt) marker gene. Using this binary vector, we constructed two vectors that expressed inverted-repeat (IR) structures targeting the rice stripe virus (RSV) coat protein (CP) gene and the special-disease protein (SP) gene. Transgenic rice lines were obtained via Agrobacterium-mediated transformation. Seven independent clones harbouring both the hpt marker gene and the target genes (RSV CP or SP) were obtained in the primary transformants of pDTRSVCP and pDTRSVSP, respectively. The segregation frequencies of the target gene and the marker gene in the T1 plants were 8.72% for pDTRSVCP and 12.33% for pDTRSVSP. Two of the pDTRSVCP lines and three pDTRSVSP lines harbouring the homozygous target gene, but not the hpt gene, were strongly resistant to RSV. A molecular analysis of the resistant transgenic plants confirmed the stable integration and expression of the target genes. The resistant transgenic plants displayed lower levels of the transgene transcripts and specific small interfering RNAs, suggesting that RNAi induced the viral resistance.

6.
Virologica Sinica ; (6): 100-108, 2012.
Article in Chinese | WPRIM | ID: wpr-423976

ABSTRACT

Rice stripe virus (RSV) infects rice and is transmitted in a propagative manner by the small brown planthopper.How RSV enters an insect cell to initiate the infection cycle is poorly understood.Sequence analysis revealed that the RSV NSvc2 protein was similar to the membrane glycoproteins of several members in the family Bunyaviridae and might induce cell membrane fusion.To conveniently study the membrane fusion activity of NSvc2,we constructed cell surface display vectors for expressing Nsvc2 on the insect cell surface as the membrane glycoproteins of the enveloped viruses.Our results showed that NSvc2 was successfully expressed and displayed on the surface of insect Sf9 cells.When induced by low pH,the membrane fusion was not observed in the cells that expressed NSvc2.Additionally,the membrane fusion was also not detected when co-expressing Nsvc2 and the viral capsid protein on insect cell surface.Thus,RSV NSvc2 is probably different from the phlebovirus counterparts,which could suggest different functions.RSV might enter insect cells other than by fusion with plasma or endosome membrane.

7.
Virologica Sinica ; (4): 343-352, 1999.
Article in Chinese | WPRIM | ID: wpr-635365

ABSTRACT

An isolate of rice stripe virus (designated as RSV-YL) was purified. The particles showed to be pleomorphisms under electron microscope, mainly branched filaments of about 80-250 nm in length and about 8 nm in width. There are also some open circular filaments of 3 nm and 8 nm in width, and some filaments of 13 nm in width and 130-190 nm in length. The basic morphism of RSV particles should be filaments of 3 nm in width and various length. By SDS-PAGE analysis, the molecular weight of disease-specific protein (SP) encoded by vRNA4 was 19.9 kDa and that of coat protein (CP) encoded by vcRNA3 was 33.6 kDa. When nucleic acid extracted from the purified RSV was electrophoresed under nondenaturing condition, the size of four dsRNAs (designated as dsRNA1-4 in order of decreasing size) was 4.9×106,2.7×106,2.0×106 and 1.7×106 Da, respectively, and that of four ssRNAs (designated as ssRNA1-4 in order of decreasing size) was 3.0×106,1.2×106,0.9×106 and 0.8×106 Da, respectively. A fifth segment with a size of 0.58×106 Da identified as ssRNA5 associated with the purified virus sometimes. The antiserum against the coat protein further purified by preparative electrophoresis was raised and used to investigate the serological relationships between RSV-CP and RSV-SP, CP and SP of rice grassy stunt virus (RGSV) which is also a member of Tenuivirus. The results showed that RSV-CP had no serological reaction with SP of RSV and PGSV, but could weakly react with antiserum of RGSV-CP, which confirmed that there is distantly evolutionary relationship between RGSV and RSV.

SELECTION OF CITATIONS
SEARCH DETAIL