Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
The Journal of Korean Knee Society ; : 69-75, 2015.
Article in English | WPRIM | ID: wpr-759176

ABSTRACT

Several anatomical anterior cruciate ligament (ACL) reconstruction techniques have been proposed to restore normal joint kinematics. However, the relative superiorities of these techniques with one another and traditional single-bundle reconstructions are unclear. Kinematic responses of five previously reported reconstruction techniques (single-bundle reconstruction using a bone-patellar tendon-bone graft [SBR-BPTB], single-bundle reconstruction using a hamstring tendon graft [SBR-HST], single-tunnel double-bundle reconstruction using a hamstring tendon graft [STDBR-HST], anatomical single-tunnel reconstruction using a hamstring tendon graft [ASTR-HST], and a double-tunnel double-bundle reconstruction using a hamstring tendon graft [DBR-HST]) were systematically analyzed. The knee kinematics were determined under anterior tibial load (134 N) and simulated quadriceps load (400 N) at 0degrees, 15degrees, 30degrees, 60degrees, and 90degrees of flexion using a robotic testing system. Anterior joint stability under anterior tibial load was qualified as normal for ASTR-HST and DBR-HST and nearly normal for SBR-BPTB, SBR-HST, and STDBR-HST as per the International Knee Documentation Committee knee examination form categorization. The analysis of this study also demonstrated that SBR-BPTB, STDBR-HST, ASTR-HST, and DBR-HST restored the anterior joint stability to normal condition while the SBR-HST resulted in a nearly normal anterior joint stability under the action of simulated quadriceps load. The medial-lateral translations were restored to normal level by all the reconstructions. The internal tibial rotations under the simulated muscle load were over-constrained by all the reconstruction techniques, and more so by the DBR-HST. All five ACL reconstruction techniques could provide either normal or nearly normal anterior joint stability; however, the techniques over-constrained internal tibial rotation under the simulated quadriceps load.


Subject(s)
Anterior Cruciate Ligament , Anterior Cruciate Ligament Reconstruction , Biomechanical Phenomena , Bone-Patellar Tendon-Bone Grafts , Joints , Knee , Tendons , Translations , Transplants
2.
Journal of Korean Neurosurgical Society ; : 412-418, 2015.
Article in English | WPRIM | ID: wpr-189975

ABSTRACT

OBJECTIVE: To investigate the effects of posterior implant rigidity on spinal kinematics at adjacent levels by utilizing a cadaveric spine model with simulated physiological loading. METHODS: Five human lumbar spinal specimens (L3 to S1) were obtained and checked for abnormalities. The fresh specimens were stripped of muscle tissue, with care taken to preserve the spinal ligaments and facet joints. Pedicle screws were implanted in the L4 and L5 vertebrae of each specimen. Specimens were tested under 0 N and 400 N axial loading. Five different posterior rods of various elastic moduli (intact, rubber, low-density polyethylene, aluminum, and titanium) were tested. Segmental range of motion (ROM), center of rotation (COR) and intervertebral disc pressure were investigated. RESULTS: As the rigidity of the posterior rods increased, both the segmental ROM and disc pressure at L4-5 decreased, while those values increased at adjacent levels. Implant stiffness saturation was evident, as the ROM and disc pressure were only marginally increased beyond an implant stiffness of aluminum. Since the disc pressures of adjacent levels were increased by the axial loading, it was shown that the rigidity of the implants influenced the load sharing between the implant and the spinal column. The segmental CORs at the adjacent disc levels translated anteriorly and inferiorly as rigidity of the device increased. CONCLUSION: These biomechanical findings indicate that the rigidity of the dynamic stabilization implant and physiological loading play significant roles on spinal kinematics at adjacent disc levels, and will aid in further device development.


Subject(s)
Humans , Aluminum , Biomechanical Phenomena , Cadaver , Intervertebral Disc , Ligaments , Polyethylene , Range of Motion, Articular , Rubber , Spine , Zygapophyseal Joint
SELECTION OF CITATIONS
SEARCH DETAIL