Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Chinese Journal of Biotechnology ; (12): 1365-1377, 2020.
Article in Chinese | WPRIM | ID: wpr-826840

ABSTRACT

With the expanded application of heavy metal cadmium, soil cadmium pollution is more and more serious. In this study, using Salix matsudana as a phytoremediation candidate, we observed changes of gene expression and metabolic pathway after 1, 7 and 30 days under 2.5 mg/L and 50 mg/L cadmium stress. The result of transcriptome sequencing showed that we obtained 102 595 Unigenes; 26 623 and 32 154 differentially expressed genes (DEG) in the same concentration and different stress time; 8 550, 3 444 and 11 428 DEG with different concentrations at the same time; 25 genes closely related to cadmium stress response were screened. The changes of genes expression (such as metallothionein, ABC transporter, zinc and manganese transporter) depended on both concentration of cadmium and exposure time. The expression of several genes was obviously up-regulated after cadmium stress, for example 3,6-deoxyinosinone ketolase (ROT3) in brassinolide synthesis pathway and flavonoid synthase (FLS), flavanone-3-hydroxylase (F3H) in the synthesis pathway of brassinolide. In addition, GO analysis shows that GO entries were mainly enriched in metabolic processes including cellular processes, membranes, membrane fractions, cells, cellular fractions, catalytic activation and binding proteins in response to cadmium stress, whose number would increase along with cadmium concentration and exposure time. The reliability of transcriptome information was verified by qPCR and physiological experimental data. Response mechanisms of S. matsudana after cadmium stress were analyzed by transcriptome sequencing, which provided theoretical guidance for remediation of cadmium pollution in soil by S. matsudana.


Subject(s)
Biodegradation, Environmental , Cadmium , Toxicity , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Proteins , Genetics , Reproducibility of Results , Salix , Genetics , Stress, Physiological , Genetics , Transcriptome
2.
Chinese Traditional and Herbal Drugs ; (24): 2887-2889, 2014.
Article in Chinese | WPRIM | ID: wpr-854715

ABSTRACT

Objective: To study the chemical constituents from the leaves of Salix matsudana. Methods: The chemical constitunents were isolated by various column chromatographic methods. The structures of the compounds were elucidated on the basis of physiochemical properties and spectral analyses. Results: Six compounds were named as 5-β-D-glucosyloxy-7-hydroxychromone (1), 5, 7-dihydroxychromone (2), (2-hydroxyphenzyl)-O-β-D-glucopyranoside (3), vanillic acid-4-O-β-D-glucoside (4), cyclo (val-pro) (5), and gallic acid (6). Conclusion: Compound 1 is a new compound named matsudoside A, compounds 2-6 are obtained from this plant for the first time.

SELECTION OF CITATIONS
SEARCH DETAIL