Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Asian Pacific Journal of Tropical Biomedicine ; (12): 253-261, 2022.
Article in Chinese | WPRIM | ID: wpr-950185

ABSTRACT

Objective: To investigate the effect and its underlying molecular mechanisms of essential oil from Saussurea costus in esophageal cancer cell line Eca109. Methods: The chemical composition of essential oil from Saussurea costus was investigated by gas chromatography-mass spectrometry (GC-MS). The anti-proliferative, anti-migrative, and apoptotic effects of essential oil from Saussurea costus against Eca109 cells were analyzed. Moreover, the expression of proteins associated with cell cycle, metastasis, and apoptosis was determined. Results: GC-MS analysis showed that essential oil from Saussurea costus was predominantly comprised of sesquiterpenes. Saussurea costus essential oil inhibited the viability of Eca109 cells in a dose-and time-dependent manner with IC 50 values of (24.29±1.49), (19.16±2.27) and (6.97±0.86) μg/mL at 12, 24, and 48 h, respectively. The expression levels of target proteins in the cell cycle (phase G 1 /S), including cyclin D1, p21, and p53, were affected by Saussurea costus essential oil. The essential oil also downregulated the expression of metastasis-related proteins MMP-9 and MMP-2. Moreover, it induced apoptosis of Eca109 cells through the mitochondrial pathway, as well as inhibition of STAT3 phosphorylation. Conclusions: The essential oil from Saussurea costus exhibited anti-proliferative, anti-migrative, and apoptotic effects on Eca109 cells, and could be further explored as a potential anti-esophageal cancer agent.

2.
Rev. Soc. Bras. Med. Trop ; 53: e20190018, 2020. graf
Article in English | LILACS | ID: biblio-1092184

ABSTRACT

Abstract INTRODUCTION: The larvicidal potential of Saussurea costus (Falc.) Lipsch. was studied against the early 4th instar larvae of Anopheles stephensi Liston., Aedes aegypti Linn.,and Culex quinquefasciatus Say. because of the emergence of mosquito resistance to conventional synthetic insecticides. METHODS: At concentrations of 12.5-200 ppm, larvicidal activities were studied under laboratory conditions. RESULTS: After 24 h of exposure, the methanol extract of the roots recorded the highest larvicidal activity against An. stephensi, with LC50 and LC90values of 7.96 and 34.39 ppm, respectively. CONCLUSIONS: We are developing potent larvicidal compound(s) from S. costus for controlling the mosquito larval population.


Subject(s)
Animals , Plant Extracts/pharmacology , Aedes/drug effects , Culex/drug effects , Saussurea/chemistry , Insecticides/pharmacology , Larva/drug effects , Anopheles/drug effects , Insecticides/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL