Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 159-166, 2022.
Article in Chinese | WPRIM | ID: wpr-940399

ABSTRACT

ObjectiveTo study the effect of flower removal on the content of three alkaloids in different parts of Fritillaria thunbergii from different regions and at different growth stages. MethodThe content of peiminine, peimine, and peimisine in the bulb, root, stem, and leaf of F. thunbergii after flower removal and with flower un-removed at different growth stages and in different regions were determined simultaneously by ultra-performance liquid chromatography-evaporative light scattering detection (UPLC-ELSD) method. The UPLC was conducted on ACQUITY UPLC BEH C18 column (2.1 mm × 150 mm, 1.7 μm) with the mobile phase of 0.02% triethylamine aqueous solution (A) and methanol (B)elution gradient(0-2 min, 45%A; 2-5 min, 45%-25%A; 5-7 min, 25%A; 7-17 min, 25%-10%A; 17-20 min, 10%A), flow velocity of 0.20 mL·min-1, column temperature 35 °C, sample room temperature of 20 °C, and injection volume of 3 µL. The ELSD was carried out at drift tube temperature 45 °C and with the sprayer parameter of 40%. ResultThe flower removal significantly increased the yield of F. thunbergii. At the budding stage, the alkaloid content in the bulb of F. thunbergii from Ningbo in Zhejiang, Pan'an in Zhejiang, and Nantong in Jiangsu after flower removal were significantly higher than that of flowering un-removal treatment, while it showed no significant difference between the flower removal and un-removal treatments for the samples from Fengjie in Chongqing. At the flowering stage, the alkaloid content in the bulb of F. thunbergii from Nantong in Jiangsu after flower removal was significantly higher than that of flower un-removal treatment, while it showed an opposite trend for the samples from Pan'an in Zhejiang and Fengjie in Chongqing and had no significant difference between the two treatments for the samples from Ningbo in Zhejiang. At the bulb expansion stage, the alkaloid content in the bulb of F. thunbergii from Ningbo in Zhejiang and Pan’an in Zhejiang after flower removal were significantly higher than that of flower un-removal treatment, which was opposite for the samples from Nantong in Jiangsu and had no significant difference between the treatments for the samples from Fengjie in Chongqing. At the harvest stage, except for the samples from Pan'an in Zhejiang, the samples from the rest 3 regions showed decreased alkaloid content in the bulb after flower removal compared with that of flower un-removal treatment. The alkaloid content in the leaf was higher than that in the bulb of F. thunbergii at all growth stages and from different origins. ConclusionFlower removal can increase the yield of F. thunbergii. The alkaloid content in the bulb of F. thunbergii with flower removed was higher than that with flower un-removed at the budding stage, while this trend was reversed at the harvest stage. Both the yield and the alkaloid content of F. thunbergii from Pan'an in Zhejiang were increased by flower removal. The above-ground part of F. thunbergii has a potential development value.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 111-118, 2020.
Article in Chinese | WPRIM | ID: wpr-872928

ABSTRACT

Objective:To establish the quality evaluation methods of Asparagi Radix decoction pieces and its standard decoction. Method:Ten batches of Asparagi Radix standard decoction were prepared. High performance liquid chromatography-evaporative light scattering detection method (HPLC-ELSD) was established for the determination of protodioscin and protoneodioscin in Asparagi Radix decoction pieces and its standard decoction, and the fingerprint detection of Asparagi Radix decoction pieces with acetonitrile-water as mobile phase for gradient elution. UHPLC-LTQ-Orbitrap-MS/MS was used to identify ten main common peaks in the fingerprint with acetonitrile-0.1% formic acid solution as mobile phase for gradient elution, electrospray ionization (ESI) and positive and negative ion mode scanning were employed, the detection range was m/z 100-1 400. Result:The total content of protodioscin and protoneodioscin in Asparagi Radix decoction pieces was 0.41%-0.72%, and their total content in Asparagi Radix standard decoction was 0.33%-0.59%, the transfer rate of these two components was 73.6%-98.3%. The dry extract yield of the standard decoction was 59.0%-73.0%, and its pH was 4.9-5.6. There were 10 common peaks in the fingerprint, and all of them were saponins, including protoneodioscin, protodioscin, aspacochioside A and its isomer, methyl protodioscin, asparagoside F, (25R)-26-O-β-D-glucopyranosyl-furostan-5, 20-diene-3β, 26-diol-3-O-[α-L-rhamnopyranosyl (1→2)]-[β-D-glucopyranosyl (1→4)-α-L-rhamnopyranosyl (1→4)]-β-D-glucopyranoside, 26-O-β-D-glucopyranosyl-furostan-20 (22)-ene-3β, 26-diol-3-O-[α-L-rhamnopyranosyl (1→2)]-[α-L-rhamnopyranosyl (1→4)]-β-D-glucopyranoside, pseudodiosgenin, aspacochioside C. Conclusion:In this paper, the quality evaluation methods of Asparagi Radix decoction pieces and its standard decoction are established, and these methods are stable and feasible, which can provide reference for the quality control of pharmaceutical preparations containing Asparagi Radix.

3.
Acta Pharmaceutica Sinica ; (12): 348-353, 2019.
Article in Chinese | WPRIM | ID: wpr-780098

ABSTRACT

To determine relative molecular weight of astragalus polysaccharides (APs), we used Shodex GS620 gel permeation chromatographic column and differential refraction detector (GPC-RI) with dextran as a reference. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and GPC combined with multi-angle laser light scattering detection (GPC-MALLS) were also used.GPC-RI measure showed four peaks of APs, with the Mw of 1 380 000, 231 000, 18 000, and 480, respectively. Three main peaks were found by GPC-RI-MALLS with the Mw as 1 148 000, 180 000, and 43 000, respectively. Strong signals in 155 000 and 18 000 were detected by MALDI-TOF-MS, which also indicated the sugar moieties of the APs as hexoses. From our study, we found that the GPC-RI method with universal correction is most suitable for Mw determination of the APs. Nevertheless, the three methods should be combined and contrasted with each other to obtain accurate information in research of polysaccharides from Chinese medicine.

4.
Herald of Medicine ; (12): 341-344, 2018.
Article in Chinese | WPRIM | ID: wpr-701011

ABSTRACT

Objective To establish a quality standard of huangqi baoxin mixture and improve its quality control system. Methods The qualitative analysis of Astragalus membranaceus,Salvia miltiorrhiza,Forsythia,and Angelica were performed by TLC.The content determination of astragalosideⅣin the huangqi baoxin mixture was conducted by HPLC-ELSD. Results As-tragalus membranaceus,Salvia miltiorrhiza,Forsythia,and Angelica in the huangqi baoxin mixture could be accurately identified by TLC.The linear range of astragaloside Ⅳ was 1.224-10.20 μg (r=0.999 5).RSDs of precision,stability,and reproducibility tests were lower than 3.0%;the recovery was 96.2%-102.9% with RSD at 2.20% (n=6). Conclusion The established quan-titative method is simple,accurate,and reliable with high specificity which can be used to control the quality of huangqi baoxin mixture.

5.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 118-120, 2008.
Article in Chinese | WPRIM | ID: wpr-284630

ABSTRACT

A reverse-phase high pressure liquid chromatography (HPLC) method with evaporative light scattering detection (ELSD) has been developed for the quantitative analysis of hupehenine in the total alkaloids from Fritillaria hupehensis. Samples were analyzed on a reverse-phase column (Hypersil C-18) with a mobile phase of methanol:water:chloroform: triethylamine (85:15:1:0.6). The ELSD was set at the drift tube temperature of 68.3℃ and gas flow rate of 1.8 L/min. Hupehenine's retention time was 13.7 min with an asymmetry factor of 1.2. The validity of the method has been verified with linearity, limit of detection, accuracy and precision. The logarithmic linear curve was obtained from 8.936 to 134.04 μg/mL (r=0.9993). The detection limit (S/N>3) of hupehenine was 1.79 μg/mL on the column. Intra-day RSD was 1.42% and inter-day RSD was 2.26% (3 days within a week). The average recovery of hupehenine was 101.50%, and RSD was 1.62%.

SELECTION OF CITATIONS
SEARCH DETAIL