Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 121-130, 2024.
Article in Chinese | WPRIM | ID: wpr-1011450

ABSTRACT

ObjectiveTo investigate the therapeutic effect of Scutellariae Radix-Coptidis Rhizoma (SRCR) on atherosclerosis (AS) in mice and the effect of SRCR on macrophage pyroptosis in plaques via NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasomes. MethodApoE-/- mice were fed with a high-fat diet for the modeling of AS and randomized into model, atorvastatin (5 mg·kg-1), and low-, medium-, and high-dose (1.95, 3.9, 7.8 g·kg-1, respectively) SRCR groups. Normal C57BL/6J mice were selected as the control group. After 8 weeks of administration, hematoxylin-eosin staining was used to observe the pathological status of the aortic plaque. The lipid accumulation in aortic plaque was observed by oil red O staining. The serum levels of total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) in mice were measured. Immunofluorescence double staining was employed to detect the co-localized expression of EGF-like module-containing mucin-like hormone receptor-like 1 (EMR1)/NLRP3 and EMR1/gasdermin D (GSDMD). The serum levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18) were determined by enzyme-linked immunosorbent assay (ELISA). The protein levels of NLRP3, apoptosis-associated speck-like protein (ASC), Caspase-1, cleaved Caspase-1, GSDMD, N-terminus of GSDMD (GSDMD-NT), pro-IL-1β, IL-1β, and IL-18 were determined by Western blot, and the mRNA levels of NLRP3, ASC, Caspase-1, GSDMD, IL-1β, and IL-18 were determined by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultCompared with the control group, the model group showed obvious plaques, elevated serum levels of TG, TC, LDL-C, IL-1β, and IL-18 (P<0.01), lowered serum level of HDL-C (P<0.01), and up-regulated expression of NLRP3 inflammasomes and molecules related to pyroptosis in the aortic plaques (P<0.01). Compared with the model group, SRCR, especially at the medium and high doses, alleviated the plaque pathology, reduced the lipid content in plaques (P<0.05, P<0.01), recovered the serum lipid levels (P<0.05), reduced the macrophage recruitment (P<0.01), activation of NLRP3 inflammasomes, and pyroptosis in aortic root plaques (P<0.05), lowered the serum IL-1β and IL-18 levels (P<0.01), and down-regulated the protein levels of NLRP3, ASC, Caspase-1, cleaved Caspase-1, GSDMD, GSDMD-NT, pro-IL-1β, IL-1β, and IL-18 (P<0.05) and the mRNA levels of NLRP3, ASC, Caspase-1, GSDMD, IL-1β, and IL-18 in the aortic tissue (P<0.05). ConclusionSRCR exerts a therapeutic effect on high-fat diet-induced AS in mice by inhibiting the activation NLRP3 inflammasomes and reducing the pyroptosis of macrophages in plaques.

2.
China Journal of Chinese Materia Medica ; (24): 6711-6720, 2023.
Article in Chinese | WPRIM | ID: wpr-1008869

ABSTRACT

This study investigated the mechanism of action of Scutellariae Radix-Coptidis Rhizoma(SR-CR) in intervening in non-alcoholic fatty liver disease(NAFLD) in rats based on lipidomics. Thirty-six SD rats were divided into a control group, a model group, SR-CR groups of different doses, and a simvastatin group, with six rats in each group. Rats in the control group were fed on a normal diet, while those in the remaining groups were fed on a high-lipid diet. After four weeks of feeding, drug treatment was carried out and rats were sacrificed after 12 weeks. Serum liver function and lipid indexes were detected using kits, and the pathomorphology of liver tissues was evaluated by hematoxylin-eosin(HE) staining and oil red O staining. Changes in lipid levels in rats were detected using the LC-MS technique. Differential lipid metabolites were screened by multivariate statistical analysis, and lipid metabolic pathways were plotted. The changes in lipid-related protein levels were further verified by Western blot. The results showed that compared with the control group, the model group showed increased levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-c)(P<0.01), and decreased levels of γ-glutamyl transferase(γ-GT) and high-density lipoprotein cholesterol(HDL-c)(P<0.01), which were significantly recovered by the intervention of SR-CR. HE staining and oil red O staining showed that different doses of SR-CR could reverse the steatosis in the rat liver in a dose-dependent manner. After lipidomics analysis, there were significant differences in lipid metabolism between the model group and the control group, with 54 lipids significantly altered, mainly including glycerolipids, phosphatidylcholine, and sphingolipids. After administration, 44 differential lipids tended to normal levels, which indicated that SR-CR groups of different doses significantly improved the lipid metabolism level in NAFLD rats. Western blot showed that SR-CR significantly decreased TG-synthesis enzyme 1(DGAT1), recombinant lipin 1(LPIN1), fatty acid synthase(FASN), acetyl-CoA carboxylase 1(ACC1), and increased the phosphorylation level of ACC1. These changes significantly decreased the synthesis of TG and increased the rate of its decomposition, which enhanced the level of lipid metabolism in the body and finally achieved the lipid-lowering effect. SR-CR can improve NAFLD by inhibiting the synthesis of fatty acids and TG.


Subject(s)
Rats , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Scutellaria baicalensis , Drugs, Chinese Herbal/therapeutic use , Pharmaceutical Preparations , Rats, Sprague-Dawley , Liver , Triglycerides/metabolism , Cholesterol , Diet, High-Fat , Azo Compounds
3.
China Journal of Chinese Materia Medica ; (24): 5790-5797, 2023.
Article in Chinese | WPRIM | ID: wpr-1008776

ABSTRACT

Scutellariae Radix-Coptidis Rhizoma(SR-CR) herbal pair is commonly used in many compound prescriptions for their synergistic heat-clearing and dampness-drying properties. During the decoction process, a substantial amount of precipitate is generated. However, there have been no explicit reports on the composition, morphology, and potential effects of this precipitate on the in vivo behavior of SR-CR decoction. This study employed high-performance liquid chromatography(HPLC), high-resolution mass spectrometry, and other techniques to analyze the composition of the co-precipitate in the decoction of SR-CR. Scanning electron microscopy and mass spectrometry imaging were used to analyze its appearance and morphology. Additionally, rats were used to investigate the effects of the co-precipitate on the in vivo behavior of the main components in the SR-CR decoction. The research findings indicated that eight components, including coptisine, berberine, epiberberine, palmatine, baicalin, oroxylin A-7-O-β-D-glucuronide, wogonoside and baicalein, constituted the primary composition of the co-precipitate. Among these, baicalin and berberine hydrochloride were the most abundant, accounting for about 60% of the total weight. Moreover, the co-precipitate contained 18% tannins. Morphological analysis revealed that the particles in the SR-CR decoction precipitate were spherical microparticles with an average diameter of around 600 nm. Pharmacokinetic research demonstrated that there were significant differences in the AUC, C_(max), t_(1/2), and T_(max) of baicalin, a major component, in rats administered with lyophilized powders of the combined decoction and single decoctions of SR-CR orally, suggesting that the precipitate generated during the decoction process can affect the in vivo behavior of the main components of the SR-CR decoction. It can reduce the absorption of baicalin in the body, decrease the extent of rapid drug release, and to a certain extent, prevent adverse reactions or side effects.


Subject(s)
Rats , Animals , Drugs, Chinese Herbal/pharmacology , Scutellaria baicalensis/chemistry , Berberine , Chromatography, High Pressure Liquid , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL