Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Article in Chinese | WPRIM | ID: wpr-789438

ABSTRACT

Objective Establishment of growth model of Bacillus cereus in cooked rice.Methods To study the effects of temperature (10,15,20,25,30,34,37 and 43℃) on the growth of Bacillus cereus in rice.And then the SGompertz and SLogistic models were selected as the primary growth models to fit the growth curve of Bacillus cereus in cooked rice at variable storage temperatures.Using the fitness (R2),accuracy factor (Af) and deviation factor (Bf) as evaluation index,quadratic polynomial model and square root model were selected further to fit and to establish the secondary growth models of Bacillus cereus in cooked rice.Results The SGompertz model could be better fitting the growth of Bacillus cereus at different temperatures,and therefore was chosen as the primary growth model of Bacillus cereus in rice.For the developed square root model,Af was 1.12 and 1.24,Bf was 0.99 and 1.03,R2 values were 0.9537 and 0.8503;respectively.For the developed quadratic polynomial model,Af was 1.24 and 1.11,Bf was 0.92 and 0.92,R2 values were 0.9550 and 0.9462;respectively.Conclusion The quadratic polynomial model can well predict the growth of Bacillus cereus in cooked rice,which proves to be reliable.

2.
Neotrop. ichthyol ; 8(4): 787-804, 2010. ilus, mapas
Article in English | LILACS | ID: lil-571573

ABSTRACT

Based on new knowledge coming from marine perciform species, the origin of oocytes and their development in the Ostariophysi, Gymnotus sylvius is described. In both Gymnotus sylvius and marine perciform fish, oogonia are found in the germinal epithelium that forms the surface of the ovarian lamellae. At the commencement of folliculogenesis, proliferation of oogonia and their entrance into meiosis gives rise to germ cell nests that extend into the stroma from the germinal epithelium. Both cell nests and the germinal epithelium are supported by the same basement membrane that separates them from the stroma. At the time of meiotic arrest, oocytes in a cell nest become separated one from the other as processes of prefollicle cells, these being derived from epithelial cells in the germinal epithelium, gradually encompass and individualize them while also synthesizing a basement membrane around themselves during folliculogenesis. The oocyte enters primary growth while still within the cell nest. At the completion of folliculogenesis, the oocyte and follicle cells, composing the follicle, are encompassed by a basement membrane. The follicle remains connected to the germinal epithelium as the both share a portion of common basement membrane. Cells originating from the stroma encompass the ovarian follicle, except where there is a shared basement membrane, to form the theca. The follicle, basement membrane and theca form the follicular complex. Oocyte development occurs inside the follicular complex. Development is divided into the stages primary and secondary growth, oocyte maturation and ovulation. Cortical alveoli appear in the ooplasm just prior to the beginning of secondary growth, the vitellogenic stage that begins with yolk deposition and proceeds until the oocyte is full-grown and the ooplasm is filled with yolk globules. Maturation is characterized by the germinal vesicle or nuclear migration, germinal vesicle breakdown or nuclear envelop fragmentation and the resumption of meiosis. At the ovulation the egg is released from the follicular complex into the ovarian lumen. When compared to marine Perciformes that lay pelagic eggs, oocyte development in Gymnotus sylvius has fewer steps within the stages of development, the two most remarkable being the absence of oil droplet formation during primary and secondary growth, (and the consequent absence of the oil droplets fusion during maturation), and the hydrolysis of yolf preceding ovulation.


Tendo por base os novos conhecimentos oriundos de recentes estudos com Perciformes marinho, a origem e o desenvolvimento dos oócitos no Ostariophysi Gymnotus sylvius são aqui descritos. Da mesma maneira que ocorre nos Perciformes, em Gymnotus sylvius as oogônias são encontradas no epitélio germinativo que margeia as lamelas ovígeras. No início da foliculogênese, a proliferação das oogônias e sua entrada em meiose dão origem a ninhos de células germinativas que se projetam em direção ao estroma ovariano, a partir do epitélio germinativo. Os ninhos e o epitélio germinativo são suportados pela mesma membrana basal que os separa do estroma. Coincidindo com a paralisação da meiose os oócitos, presentes nos ninhos, são separados uns dos outros por processos citoplasmáticos das células pré-foliculares. As células pré-foliculares derivam do epitélio germinativo sendo, portanto, inicialmente células epiteliais. Durante a foliculogênese, ao mesmo tempo em que envolvem os oócitos individualizando-os, as células pré-foliculares sintetizam a membrana basal ao seu redor. Os oócitos entram em crescimento primário ainda dentro dos ninhos. Ao término da foliculogênese, o oócito e as células foliculares que compõem o folículo são circundados pela membrana basal. O folículo permanece conectado ao epitélio germinativo uma vez que ambos compartilham uma porção comum da membrana basal. Células oriundas do estroma circundam o folículo ovariano exceto na região de compartilhamento da membrana basal formando a teca. O folículo, a membrana basal e a teca formam o complexo folicular. O desenvolvimento do oócito ocorre dentro do complexo folicular e compreende os estágios de crescimento primário e secundário, maturação e ovulação. Os alvéolos corticais surgem no ooplasma momentos antes do início do crescimento secundário ou estágio vitelogênico que tem início com a deposição de vitelo, progride até o oócito esteja completamente desenvolvido e o ooplasma preenchido pelos glóbulos de vitelo. A maturação é caracterizada pela migração do núcleo ou vesícula germinativa, pela quebra da vesícula germinativa, ou seja, pela fragmentação do envoltório nuclear e, retomada da meiose. Na ovulação o ovo é liberado do complexo folicular para o lúmen ovariano. Em comparação com os Perciformes marinhos com ovos pelágicos, o desenvolvimento oocitário em Gymnotus sylvius tem menos etapas dentro dos estágios de desenvolvimento, sendo as duas mais notáveis delas as ausências da formação das gotas de lipídio durante os crescimentos primário e secundário (e a consequente fusão das gotas para formar um único glóbulo de lipídio durante a maturação) e, a hidrólise do vitelo antecedendo a ovulação.


Subject(s)
Animals , Ovarian Follicle/physiology , Ovulation/genetics
3.
Acta amaz ; Acta amaz;39(2): 349-360, 2009. graf, tab
Article in English | LILACS | ID: lil-522381

ABSTRACT

Forest regrowth occupies an extensive and increasing area in the Amazon basin, but accurate assessment of the impact of regrowth on carbon and nutrient cycles has been hampered by a paucity of available allometric equations. We develop pooled and species-specific equations for total aboveground biomass for a study site in the eastern Amazon that had been abandoned for 15 years. Field work was conducted using randomized branch sampling, a rapid technique that has seen little use in tropical forests. High consistency of sample paths in randomized branch sampling, as measured by the standard error of individual paths (14 percent), suggests the method may provide substantial efficiencies when compared to traditional procedures. The best fitting equations in this study used the traditional form Y=a×DBHb, where Y is biomass, DBH is diameter at breast height, and a and b are both species-specific parameters. Species-specific equations of the form Y=a(BA×H), where Y is biomass, BA is tree basal area, H is tree height, and a is a species-specific parameter, fit almost as well. Comparison with previously published equations indicated errors from -33 percent to +29 percent would have occurred using off-site relationships. We also present equations for stemwood, twigs, and foliage as biomass components.


Florestas secundárias ocupam uma área extensa e crescente na bacia Amazônica, porém determinações acuradas do impacto dessas florestas nos ciclos de carbono e nutrientes têm sido dificultadas pelo número reduzido de equações alométricas. Neste estudo, nós desenvolvemos equações em nível de comunidade e espécies individuais para estimar a biomassa total da parte aérea de uma floresta secundária com 15 anos de idade na Amazônia oriental. O trabalho de campo utilizou amostragem aleatória de ramos, que é uma técnica rápida, porém pouco utilizada em florestas tropicais. Baseada no erro padrão da série de segmentos individuais (14 por cento), a consistência da série de segmentos totais amostrados foi considerada elevada, sugerindo que o método pode ser eficiente em comparação com procedimentos tradicionais. Os melhores ajustes foram obtidos com a equação tradicional Y=a×DBHb, onde Y é a biomassa, DBH é o diâmetro à altura do peito, e a e b são parâmetros para cada espécie arbórea. Ajustes razoáveis também foram alcançados com equações da forma Y=a(BA×H), onde Y é a biomassa, BA é a área basal, H é a altura e a é um parâmetro específico para cada espécie arbórea. Comparações com equações disponíveis na literatura indicaram uma faixa de erro provável de -33 por cento a +29 por cento usando-se relações desenvolvidas para outros sítios. Nós também apresentamos equações para os seguintes componentes da biomassa da parte aérea: tronco, ramos e folhas.


Subject(s)
Rainforest , Latent Class Analysis
SELECTION OF CITATIONS
SEARCH DETAIL