Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters








Language
Year range
1.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 728-733, 2020.
Article in Chinese | WPRIM | ID: wpr-855805

ABSTRACT

AIM: To investigate whether sesamol can improve inflammation and insulin resistance in adipose tissue of obese mice by regulating macrophage polarization. METHODS: An obese animal model was established in mice by inducing obesity with high-fat diet. The obese mice were administrated with sesamol (100 mg/kg) for 8 weeks. The mice were sacrificed after the intraperitoneal glucose tolerance test and insulin tolerance test, and the plasma lipid and insulin levels were measured. The expression of P-AKT and P-JNK in adipose tissue of epididymis was detected by Western blotting. F4/80 and Cd11c immunohistochemistry and immunofluorescence staining were performed on the adipose tissue sections. The mRNA expression of cytokines and chemokines in adipose tissue was measured by Real-time fluorescence quantitative PCR. RESULTS: Sesamol treatment reduced body weight and lipid level of obese mice, improved glucose tolerance and insulin resistance. In sesamol treated group, macrophage infiltration in adipose tissue was decreased, P-AKT expression was enhanced, P-JNK expression was reduced, mRNA expression of M1 type of macrophage markers (Cd11c, iNOS, TNF-α and IL-6) was down-regulated, mRNA expression of M2 type markers (chi3l3, Arg1 and Mgl1) was up-regulated. CONCLUSION: Sesamol can alleviate inflammation and insulin resistance in adipose tissue of obese mice. These effects may be associated with inhibition of JNK signal pathway and improvement of polarization imbalance of macrophages in adipose tissue.

2.
Asian Pacific Journal of Tropical Biomedicine ; (12): 377-386, 2018.
Article in Chinese | WPRIM | ID: wpr-950414

ABSTRACT

Objective: To investigate biomolecular alteration of sesamol on human lung adenocarcinoma (SK-LU-1) cells compared with cisplatin using Fourier transform infrared microscopy (FTIR). Methods: Cytotoxicity of sesamol was investigated against SK-LU-1 cells by using neutral red. DNA fragmentation and the cell cycle analysis were determined by agarose gel electrophoresis and flow cytometry, respectively. The FTIR microscopy technique was applied to explore the changes in cellular biochemical compositions in cells treated with sesamol that the biochemical and biological assays cannot cover. The alkylating property was determined by 4-(4-nitrobenzyl)pyridine assay. Results: Sesamol and cisplatin exerted an antiproliferative effect at 48 h with respective IC

3.
Asian Pacific Journal of Tropical Biomedicine ; (12): 377-386, 2018.
Article in Chinese | WPRIM | ID: wpr-700141

ABSTRACT

Objective: To investigate biomolecular alteration of sesamol on human lung adenocarcinoma (SK-LU-1) cells compared with cisplatin using Fourier transform infrared microscopy (FTIR). Methods: Cytotoxicity of sesamol was investigated against SK-LU-1 cells by using neutral red. DNA fragmentation and the cell cycle analysis were determined by agarose gel electrophoresis and flow cytometry, respectively. The FTIR microscopy technique was applied to explore the changes in cellular biochemical compositions in cells treated with sesamol that the biochemical and biological assays cannot cover. The alkylating property was determined by 4-(4-nitrobenzyl)pyridine assay. Results: Sesamol and cisplatin exerted an antiproliferative effect at 48 h with respective IC50 values of 2.7 and 0.07 mM. Both induced apoptosis by causing DNA damage and accumulation of cell populations at sub-G1. FTIR microscopy and Principle Component Analysis clearly discriminated the sesamol- and cisplatin-treated cells from the untreated cells or control. A significant increase of total lipid content was found in cisplatin-treated cells. Conformational changes in the proteins secondary structure from the α-helix to the β-sheet were found in both sesamol- and cisplatin-treated cells, as well as significant reductions in relative DNA content of both compared to the control were observed, suggesting DNA damage. A shift in the peak position of DNA region provides insight on the DNA interactions. Conclusions: The non-alkylating effect of sesamol based on the nitrobenzyl pyridine assay delineates the non-covalent binding mode of sesamol on DNA. Hydrogen bonding is the binding mode of sesamol on DNA, while for cisplatin it was covalent and hydrogen bonding.

4.
Asian Pacific Journal of Tropical Biomedicine ; (12): 886-895, 2017.
Article in Chinese | WPRIM | ID: wpr-950512

ABSTRACT

Objective To investigate the antimelanogenesis properties of three sesame compounds-sesamol, sesamin and sesamolin via two stages of melanin synthesis vis-à-vis sunscreen function and enzyme inhibition in melanoma cell line in order to search for alternative depigmenting agents. Methods Antimelanogenic effects of sesame lignans were assessed in SK-MEL2 compared with the reference depigmenting agents, kojic acid and β-arbutin, in order to evaluate: (a) the sunscreen function of sesamol, sesamin and sesamolin by measurement of UV absorbtion property; (b) the inhibition of tyrosinase activity through mushroom and cellular tyrosinase; and (c) the effect on melanin content and melanogenic protein expression (tyrosinase, TRP-1 and TRP-2) by Western blot analysis; and (d) the toxicity of sesamol, sesamin and sesamolin to cells using cell cytotoxicity assay. Results The results showed that sesamin, sesamolin and sesamol exerted satisfiable sunscreen function by absorbed UVB at 290 nm. Sesamol exhibited the highest inhibition of mushroom tyrosinase activity, but lipophilic sesamolin exhibited the highest cellular tyrosinase inhibition (IC

5.
Asian Pacific Journal of Tropical Biomedicine ; (12): 886-895, 2017.
Article in Chinese | WPRIM | ID: wpr-667412

ABSTRACT

Objective: To investigate the antimelanogenesis properties of three sesame compounds-sesamol,sesamin and sesamolin via two stages of melanin synthesis vis-`a-vis sunscreen function and enzyme inhibition in melanoma cell line in order to search for alternative depigmenting agents. Methods: Antimelanogenic effects of sesame lignans were assessed in SK-MEL2 compared with the reference depigmenting agents, kojic acid and β-arbutin, in order to evaluate:(a)the sunscreen function of sesamol,sesamin and sesamolin by measurement of UV absorbtion property; (b) the inhibition of tyrosinase activity through mushroom and cellular tyrosinase; and (c) the effect on melanin content and melanogenic protein expression(tyrosinase,TRP-1 and TRP-2)by Western blot analysis;and(d)the toxicity of sesamol,sesamin and sesamolin to cells using cell cytotoxicity assay. Results: The results showed that sesamin, sesamolin and sesamol exerted satisfiable sunscreen function by absorbed UVB at 290 nm.Sesamol exhibited the highest inhibition of mushroom tyrosinase activity, but lipophilic sesamolin exhibited the highest cellular tyrosinase inhibition (IC50of 1.6 μM) followed by sesamin, sesamol, and kojic acid, respectively.The order from high to low inhibition of melanin pigment was detected in the SK-MEL2 treated with sesamolin, sesamin, sesamol, kojic acid, and β-arbutin, respectively.Sesamolin and sesamin successfully inhibited cellular tyrosinase activity and respectively decreased TRP-1/TRP-2 (36%/15%) and TRP-1 levels (16%), thereby inhibiting melanogenesis via antityrosinase activity. No cytotoxicity to SK-MEL2 or Vero (normal) cell lines was observed at the lignan concentrations that exerted an anti-melanogenic effect. Conclusions: Three sesame lignans prevent melanin synthesis through 2 stages: (a) by blocking melanin-induction and(b)by interrupting melanogenic enzyme production.This study provides evidence that sesamol, sesamin and sesamolin are potential for anti-melanogenesis agents.

6.
Chinese Journal of Biochemical Pharmaceutics ; (6): 1-4, 2014.
Article in Chinese | WPRIM | ID: wpr-453803

ABSTRACT

Objective To investigate the protective effect of sesamol on radiation injury mouse bone marrow c-kit+cell,and further explore its possible mechanism.Methods Mouse bone marrow c-kit+cells were collected by immunomagnetic cell sorting method.There were 2 groups in the study:single dosing group and radiation plus drug group(doses of irradiation included 1 Gy and 4 Gy),and 10 -8 ~10 -3 mol/L sesamol were co-cultured with mouse bone marrow c-kit+cell half hour before irradiation exposure,cells were then cultured for 18 hours under the conventional culture conditions (37℃ and 5% CO2 ).The viability of mouse bone marrow c-kit+cells were measured by bioluminescence.The ability of colony-forming units were detected by CFU-GM and apoptotic rate of c-kit+cells were detected by Annexin V/PI antiapoptotic assay. Results Compared with control group,after 1 Gy and 4 Gy irradiated,cell viability of mouse bone marrow c-kit+cells were decreased 59.52% and 79.35%,respectively(P<0.05),the number of colony-forming were decreased 40.38% and 87.69%,respectively(P<0.05 ).Cell viability of c-kit+cells and the number of colonies formed were significantly increased with sesamol concentration between 10 -8 ~10 -6 mol/L,but not improve apoptosis rate.Conclusion Sesamol has protective effect on irradiation-induced injury in mouse bone marrow c-kit+cells,the mechanism of which may be related to the ability of hematopoietic progenitor cells proliferation.

7.
Chinese Journal of Biochemical Pharmaceutics ; (6): 26-28, 2014.
Article in Chinese | WPRIM | ID: wpr-452143

ABSTRACT

Objective To observe the effect of sesamol on the hematopoietic system in mice exposed to 4 Gy irradiation. Method Twenty C 57 BL/6 mice were randomly divided into control group, sesamol group, irradiated group and irradiated+sesamol group (n=5). Mice of control and sesamol group received sham irradiation, and the rest exposed to 4 Gy total body irradiation, dose rate 1.01 Gy/min. Mice in sesamol group and irradiated+sesamol group received a dose of 10 mg/kg sesamol administered by gavage every day for 7 days after irradiation exposure. Mice of other two groups were treated with vehicle solution. After 4 Gy irradiation 7 day, the peripheral bloods were collected. The levels of colony forming units-granulocyte-macrophage (CFU-GM) were detected. Results Compared to irradiation group, the level of WBC、cell count of BMNCs and CFU-GM significantly decreased in the irradiated mice, decreased in the irradiated mice (P<0.05). Compared to irradiation group, cell count of BMNCs and CFU-GM in the irradiated+sesamol group increased significantly (P<0.05). Conclusion Sesamol has a certain impact on the radiation-induced changes in hematopoietic system. The mechanism need to be further explored.

8.
Journal of Pharmaceutical Analysis ; (6): 156-159, 2012.
Article in Chinese | WPRIM | ID: wpr-472103

ABSTRACT

Horseradish peroxidase (HRP) is generally used as a label enzyme in enzyme immunoassay (EIA).The procedure used for HRP detection in EIA is critical for sensitivity and precision.This paper describes a novel fluorimetric assay for horseradish peroxidase (HRP) using sesamol as substrate.The principle of the assay is as follow:sesamol (3,4-methylenedioxy phenol) is reacted enzymatically in the presence of hydrogen peroxide to produce dimeric sesamol.The dimer is fluorescent and can be detected sensitively at ex.347 nm,em.427 nm.The measurable range of HRP was 1.0 × 10-18 to 1.0 × 10-15 mol/assay,with a detection limit of 1.0 × 10-18 tmol/assay.The coefficient of variation (CV,n=8) was examined at each point on the standard curve,with a mean CV percentage of 3.8%.This assay system was applied to thyroid stimulating hormone (TSH) EIA using HRP as the label enzyme.

SELECTION OF CITATIONS
SEARCH DETAIL