Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Chinese Journal of Applied Physiology ; (6): 41-46, 2022.
Article in Chinese | WPRIM | ID: wpr-927895

ABSTRACT

Objective: To investigate the repair effect and JNK/NF-κB,SOX9 mechanisms of vibration exercise with different frequencies on articular cartilage in rats with early knee osteoarthritis. Methods: Forty-eight adult male SD rats were randomly divided into six groups(n=8):model control group(MC),high frequency vibration group 1 (GP1,60 Hz),high frequency vibration 2 group (GP2,40 Hz),medium frequency vibration group (ZP,20 Hz),minor frequency group(DP,10 Hz)and normal control group(NC). Except for NC group,the rats in each group were made into early knee osteoarthritis model after six weeks of knee joint cavity injection of papain solution and 2% mixture l-cysteine on the 1st,4 th and 7th day. Each exercise group was subjected vibration to 40 minutes a day with amplitude of 2~5 mm and 5 days a week. Four weeks later, the articular cartilage of the lateral femoral condyle of the both back leg knee joints were detected by HE staining,serine O staining and Mankin scores for morphological observation. The expression levels of JNK,NF-κB p65 and Sox9 mRNA in articular cartilage of the medial femoral condyle were detected by RT-qPCR,and the protein expressions of JNK,NF-κB p65 and Sox9 were detected by Western blot. Results: Compared with the NC group,the Mankin score in other groups was significantly higher (P<0.01). Compared with the MC group,the Mankin score of each vibration group was significantly lower(P<0.05),the mRNA and protein expressions of JNK and NF-κB p65 in each vibration training group were significantly lower (P<0.01),the expressions of Sox9 mRNA and protein in vibration training group were increased significantly (P<0.01). Compared with the higher frequency group,the Mankin score,the mRNA and protein expressions of JNK and NF-κB p65 of lower frequency group were significantly lower (P<0.05 or P<0.01). But the expressions of Sox9 mRNA and protein were significantly higher (P< 0.05 or P<0.01). Conclusion: Vibration exercise of different frequencies may present varying degrees of cartilage repair impact in rats with early knee osteoarthritis,and the cartilage repair by low-frequency vibration training is better than that by high-frequency vibration. This can be one of the mechanisms on controlling collagen synthesis by down-regulating JNK/NF-κB expression and increasing SOX9 activity of OA articular cartilage.


Subject(s)
Animals , Male , Rats , Cartilage, Articular/metabolism , MAP Kinase Kinase 4 , NF-kappa B/metabolism , Osteoarthritis, Knee/therapy , RNA, Messenger/metabolism , Rats, Sprague-Dawley , SOX9 Transcription Factor , Vibration
2.
West China Journal of Stomatology ; (6): 74-80, 2021.
Article in English | WPRIM | ID: wpr-878412

ABSTRACT

OBJECTIVES@#This study aimed to explore the effect of sex determining region Y-box 9 (SOX9) on the microtubule formation and epithelial-mesenchymal transition (EMT) of human oral squamous cell carcinoma (OSCC) CAL27 and the underlying mechanism.@*METHODS@#SOX9-shRNA1 and SOX9-shRNA2 were designed and synthesized and then transfected into CAL27 cells. The expression of SOX9 was detected by quantitative real-time polymerase chain reaction. Microtubule formation assay was used to detect the change in the number of microtubule nodules after interfering with SOX9. Immunofluorescence was used to detect the Vimentin content. Western blot was used to detect the protein expression of EMT marker molecules and Wnt/β-catenin pathway-related proteins, such as E-cadherin, N-cadherin, Fibronectin, Wnt, β-catenin, T-cell factor-4 (TCF-4).@*RESULTS@#The expression level of SOX9 significantly decreased after transfection with SOX9-shRNA1 and SOX9-shRNA2 in CAL27 cells (@*CONCLUSIONS@#Interference with SOX9 decreased Vimentin content and inhibited the microtubule formation and protein expression of EMT marker molecules, as well as the expression of proteins related to the Wnt/β-catenin pathway. Thus, SOX9 can induce microtubule formation and EMT in CAL27, which was related to the inhibition of the Wnt/β-catenin pathway activation.


Subject(s)
Humans , Carcinoma, Squamous Cell , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Head and Neck Neoplasms , Microtubules/metabolism , Mouth Neoplasms , SOX9 Transcription Factor/metabolism , Squamous Cell Carcinoma of Head and Neck , Wnt Signaling Pathway , beta Catenin/metabolism
3.
West China Journal of Stomatology ; (6): 13-18, 2019.
Article in Chinese | WPRIM | ID: wpr-772431

ABSTRACT

OBJECTIVE@#To investigate the effect of sex determining region Y-box 9 (SOX9) on epithelial mesenchymal transition (EMT) and cloning of oral squamous cell carcinoma (OSCC).@*METHODS@#siRNA control, SOX9 siRNA were transfected into BcaCD885 cells in OSCC. Simultaneously, cells that did not undergo transfection were used as the control. Quantitative real time polymerase chain reaction (qRT-PCR) and Western blot were used to select SOX9 siRNA1 with enhanced interference effect. A cell cloning assay was used to determine the cell's clone formation ability. E-cadherin and Vimentin expressions were detected by immunofluorescence. The expressions of E-cadherin, matrix metalloprotease 2 (MMP-2), Vimentin and matrix metalloprotease 9 (MMP-9) were detected by Western blot. Cell invasion and migration were detected in the Transwell compartment.@*RESULTS@#The levels of SOX9 mRNA and protein in SOX9 siRNA cells were significantly lower than those of the control (P<0.05). An increase in the number of SOX9 siRNA1 cell clonesled to the considerable decrease of the number of cell invasion and migration. In addition, levels of MMP-2 and MMP-9 proteins in cells decreased significantly compared with the control (P<0.05). The level of Vimentin expression in SOX9 siRNA1 cells decreased, and expression level of E-cadherin was elevated. Cell EMT was inhibited compared with the control, and the difference was statistically significant (P<0.05).@*CONCLUSIONS@#Down-regulation of SOX9 inhibited EMT, clonogenic formation, cell invasion and OSCC migration.


Subject(s)
Humans , Cadherins , Carcinoma, Squamous Cell , Cell Line, Tumor , Cell Movement , Down-Regulation , Epithelial-Mesenchymal Transition , Mouth Neoplasms , Vimentin
4.
Annals of Pediatric Endocrinology & Metabolism ; : 108-112, 2014.
Article in English | WPRIM | ID: wpr-58748

ABSTRACT

The 46,XX testicular disorder of sex development (DSD), also known as 46,XX male syndrome, is a rare form of DSD and clinical phenotype shows complete sex reversal from female to male. The sex-determining region Y (SRY) gene can be identified in most 46,XX testicular DSD patients; however, approximately 20% of patients with 46,XX testicular DSD are SRY-negative. The SRY-box 9 (SOX9) gene has several important functions during testis development and differentiation in males, and overexpression of SOX9 leads to the male development of 46,XX gonads in the absence of SRY. In addition, SOX9 duplication has been found to be a rare cause of 46,XX testicular DSD in humans. Here, we report a 4.2-year-old SRY-negative 46,XX boy with complete sex reversal caused by SOX9 duplication for the first time in Korea. He showed normal external and internal male genitalia except for small testes. Fluorescence in situ hybridization and polymerase chain reaction (PCR) analyses failed to detect the presence of SRY, and SOX9 intragenic mutation was not identified by direct sequencing analysis. Therefore, we performed real-time PCR analyses with specific primer pairs, and duplication of the SOX9 gene was revealed. Although SRY-negative 46,XX testicular DSD is a rare condition, an effort to make an accurate diagnosis is important for the provision of proper genetic counseling and for guiding patients in their long-term management.


Subject(s)
Female , Humans , Male , 46, XX Testicular Disorders of Sex Development , Diagnosis , Disorders of Sex Development , Fluorescence , Genes, sry , Genetic Counseling , Genitalia, Male , Gonads , In Situ Hybridization , Korea , Phenotype , Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Sexual Development , Testis
SELECTION OF CITATIONS
SEARCH DETAIL