Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Braz. dent. j ; 34(4): 135-142, July-Aug. 2023. tab
Article in English | LILACS-Express | LILACS, BBO | ID: biblio-1520341

ABSTRACT

Abstract This study aimed to evaluate the effect of an elastomeric urethane monomer (Exothane-24) in different concentrations on physicochemical properties, gap formation, and polymerization shrinkage stress of experimental resin composites. All experimental composites were prepared with 50 wt.% of Bis-GMA and 50 wt.% of TEGDMA, to which 0 wt.% (control), 10 wt.%, 20 wt.%, 30 wt.%, and 40 wt.% of Exothane-24 were added. Filler particles (65 wt.%) were then added to these resin matrixes. Ultimate tensile strength (UTS: n = 10), flexural strength (FS: n = 10), flexural modulus (FM: n = 10), hardness (H: n = 10), hardness reduction (HR: n = 10), degree of conversion (DC: n = 5), gap width (GW: n = 10), and polymerization shrinkage stress in Class I (SS-I: n = 10) and Class II (SS-II: n = 10) simulated configuration. All test data were analyzed using one-way ANOVA and Tukey's test (α = 0.05; β= 0.2). Exothane-24 in all concentrations decreased the H, HR, DC, GW, SS-I, and SS-II (p < 0.05) without affecting the UTS, and FS (p > 0.05). Reduction in FM was observed only in the Exothane 40% and 30% groups compared to the control (p < 0.05). Exothane-24 at concentrations 20% and 30% seems suitable since it reduced GW and polymerization SS without affecting the properties of the composite resins tested, except for H.


Resumo Este estudo teve como objetivo avaliar o efeito de um monômero elastomérico de uretano (Exothane-24) em diferentes concentrações em propriedades físico-químicas, formação de fenda e tensão de contração de polimerização de resinas compostas experimentais. Todos os compósitos experimentais foram preparados com 50% em peso de Bis-GMA e 50% em peso de TEGDMA, nos quais 0% (controle), 10%, 20%, 30% e 40% em peso de Exothane-24 foram adicionados. Partículas de carga (65% em peso) foram então adicionadas as matrizes resinosas. Resistência coesiva (RC: n = 10), resistência à flexão (RF: n = 10), módulo de flexão (MF: n = 10), dureza (D: n = 10), redução de dureza (RD: n = 10), grau de conversão (GC: n = 5), largura de fenda (LF: n = 10) e tensão de contração de polimerização em simulações de cavidades Classe I (TC-I: n = 10) e Classe II (TC-II: n = 10). Todos os dados do teste foram analisados usando one-way ANOVA e teste de Tukey (α = 0,05; β = 0,2). O Exothane-24 em todas as concentrações diminuiu a D, RD, GC, LF, TC-I e TC-II (p < 0,05) sem afetar o RC e RF (p > 0,05). A redução da MF foi observada apenas nos grupos Exothane 40% e 30% em relação ao controle (p < 0,05). O Exothane-24 nas concentrações de 20% e 30% pareceu ser adequado, pois reduziu LF e TC de polimerização sem afetar as propriedades das resinas compostas testadas, exceto para D.

2.
Braz. dent. j ; 30(6): 592-598, Nov.-Dec. 2019. tab, graf
Article in English | LILACS | ID: biblio-1055449

ABSTRACT

Abstract This study aimed to evaluate the polymerization properties of bulk-fill materials (low and high-viscosity) by using high-intensity continuous light and intermittent photo-activation in terms of polymerization shrinkage stress and degree of conversion (DC). The following Bulk-fill and Conventional nanofilled resin composites were evaluated: Filtek Z350XT Flow (3M/ESPE), SureFil SDR Flow (Dentsply), Filtek Bulk Fill Flow (3M/ESPE), Filtek Z350XT (3M/ESPE) and Filtek Bulk Fill Posterior (3M/ESPE). A LED device (DB 685, Dabi Atlante) was used for both protocols: continuous uniform and intermittent photo-activation (light-on and light-off cycles) with identical radiant exposure (14 J/cm2). The polymerization shrinkage stress (n=6) was evaluated by inserting a single increment of 12 mm3 between two stainless steel plates (6×2 mm) adapted to a Universal Testing Machine (UTM), at different times. Measurements were recorded after photo-activation. The degree of conversion was evaluated by Fourier transformed infrared spectroscope (FTIR) with an attenuated total reflectance (ATR) accessory (n=5). Data were analyzed by three-way ANOVA and Tukey's HSD (α=0.05) tests. Bulk Fill Posterior presented higher shrinkage stress values when photo-activated with the intermittent technique (p<0.05). The intermittent photo-activation increased the degree of conversion for the low-viscosity bulk-fills (p<0.05). Therefore, the use of modulated photo-activation (intermittent) must be indicated with caution since its use can influence the shrinkage stress and degree of conversion of composites, which varies according to the resin formulations.


Resumo O presente estudo teve como objetivo avaliar as propriedades de polimerização de materiais bulk-fill (baixa e alta viscosidade) utilizando luz contínua de alta intensidade e fotoativação intermitente em relação ao estresse de contração de polimerização e grau de conversão (DC). As seguintes resinas compostas Bulk-fill e nanohíbridas convencionais foram avaliadas: Filtek Z350XT Flow (3M/ESPE), SureFil SDR Flow (Dentsply), Filtek Bulk Fill Flow (3M/ESPE), Filtek Z350XT (3M/ESPE) e Filtek Bulk Fill Posterior (3M/ESPE). Um dispositivo de LED (DB 685, Dabi Atlante) foi utilizado nos dois protocolos: fotoativação contínua e intermitente contínua (ciclos de liga e desliga) com exposição idêntica (14 J/cm2). A tensão de contração de polimerização (n=6) foi avaliada através da inserção de um incremento único de 12 mm3 entre duas placas de aço inoxidável (6×2 mm) adaptadas a uma Máquina de Ensaio Universal (UTM), em tempos diferentes. As medições foram registradas após a fotoativação. O grau de conversão foi avaliado por FTIR-ATR (n=5). Os dados foram analisados ​​pelos testes ANOVA a três fatores e teste de Tukey (α=0,05). A resina Bulk Fill Posterior apresentou maiores valores de tensão de contração quando fotoativadas com a técnica intermitente (p<0,05). A fotoativação intermitente aumentou o grau de conversão nas resinas bulk-fill de baixa viscosidade (p<0,05). Portanto, o uso de fotoativação modulada (intermitente) deve ser indicado com cautela, uma vez que seu uso pode influenciar a tensão de contração e o grau de conversão dos compósitos, o que varia de acordo com as formulações da resina.


Subject(s)
Materials Testing , Composite Resins , Viscosity , Polymerization
3.
Braz. dent. sci ; 17(3): 60-66, 2014.
Article in English | LILACS, BBO | ID: lil-743034

ABSTRACT

The longevity of resin depends on its binding between the margin of restorations and the polymer, and one factor that influences this aspect is the shrinkage stress. Thus, the working group presents the following systematic review thatverifies the influence of composite resin composition on shrinkage stress. The following electronic databases were searched: MEDLINE (via Ovid and PubMed - 2004 to January 2014), with the keywords: shrinkage stress, degree of conversion, resin composite. For shrinkage stress,, the best results were found when the BISGMA monomer was used and for the inorganic composition, an inverse relationship was observed: the increased inorganic filler content decreases shrinkage stress.


A longevidade de resina depende da sua ligação entre a margem de restaurações e o polímero, e um fator que influencia a este aspecto, é a tensão de contração. Assim, o grupo de trabalho faz a seguinte análise sistemática para verificar a influência da composição das resinas composta na tensão de contração. As seguintes bases de dados eletrônicas foram pesquisadas: MEDLINE (via PubMed e Ovídio - de 2004 a janeiro de 2014), com as palavras-chave: estresse de contração, grau de conversão, resina composta. Para tensão de contração, os melhores resultados foram encontrados quando o monômero BISGMA foi utilizada e para a composição inorgânica, uma relação inversa foi observada: o aumento do teor de carga inorgânica diminui estresse de contração.


Subject(s)
Composite Resins , Dental Stress Analysis
4.
Rev. bras. odontol ; 69(1): 21-24, Jan.-Jun. 2012. ilus, tab
Article in Portuguese | LILACS | ID: lil-718019

ABSTRACT

Este artigo tem como objetivo avaliar as tensões de contração de um compósito geradas pela polimerização em função da área aderida. Cilindros de vidro com 2 mm de diâmetro (G1) ou com 4 mm (G2) foram posicionados nas porções inferior e superior da máquina de testes. A distância dos cilindros de G1 era 2 mm e de G2 1 mm. Em cada grupo, a resina (Fill-Magic - Vigodent) foi inserida e fotoativada entre os cilindros e a t ensão m edida p or 1 5 m inutos ( n = 5 ). Os dados foram analisados pelo teste t-Student (p< 0,05). A maior área de adesão gerou menor tensão de contração para o material testado.


The aim of this study is to evaluate the shrinkage stress generated during polymerization of a composite resin related to the adhesion area. Cylinders of glass with 2 mm in diameter (G1) or 4 mm (G2) were positioned on the upper and lower portions of the testing machine. The distance from the cylinders was 2 mm in G1 and 1 mm in G2. In each group, the resin (Fill-Magic - Vigodent) was inserted and photopolymerized between the cylinders and the stress was measured for 15minutes (n = 5). Data were analyzed by Student t test (p < 0,05). The largest area of adhesion generated lower shrinkage stress to the tested material.


Subject(s)
Composite Resins , Light-Curing of Dental Adhesives , Polymerization
5.
Journal of Korean Academy of Conservative Dentistry ; : 188-195, 2011.
Article in Korean | WPRIM | ID: wpr-19517

ABSTRACT

OBJECTIVES: The purpose of this study was to evaluate the polymerization shrinkage stress among conventional methacrylate-based composite resins and a silorane-based composite resin. MATERIALS AND METHODS: The strain gauge method was used for the determination of polymerization shrinkage strain. Specimens were divided by 3 groups according to various composite materials. Filtek Z-250 (3M ESPE) and Filtek P-60 (3M ESPE) were used as a conventional methacrylate-based composites and Filtek P-90 (3M ESPE) was used as a silorane-based composites. Measurements were recorded at each 1 second for the total of 800 seconds including the periods of light application. The results of polymerization shrinkage stress were statistically analyzed using One way ANOVA and Tukey test (p = 0.05). RESULTS: The polymerization shrinkage stress of a silorane-based composite resin was lower than those of conventional methacrylate-based composite resins (p 0.05). CONCLUSIONS: Within the limitation of this study, silorane-based composites showed lower polymerization shrinkage stress than methacrylate-based composites. We need to investigate more into polymerization shrinkage stress with regard to elastic modulus of silorane-based composites for the precise result.


Subject(s)
Composite Resins , Elastic Modulus , Light , Polymerization , Polymers , Sprains and Strains
6.
Journal of Korean Academy of Conservative Dentistry ; : 145-153, 2009.
Article in Korean | WPRIM | ID: wpr-164695

ABSTRACT

The purpose of this study was to evaluate the effect of instrument compliance on the polymerization shrinkage stress measurements of dental composites. The contraction strain and stress of composites during light curing were measured by a custom made stress-strain analyzer, which consisted of a displacement sensor, a cantilever load cell and a negative feedback mechanism. The instrument can measure the polymerization stress by two modes: with compliance mode in which the instrument compliance is allowed, or without compliance mode in which the instrument compliance is not allowed. A flowable (Filtek Flow: FF) and two universal hybrid (Z100: Z1 and Z250: Z2) composites were studied. A silane treated metal rod with a diameter of 3.0 mm was fixed at free end of the load cell, and other metal rod was fixed on the base plate. Composite of 1.0 mm thickness was placed between the two rods and light cured. The axial shrinkage strain and stress of the composite were recorded for 10 minutes during polymerization, and the tensile modulus of the materials was also determined with the instrument. The statistical analysis was conducted by ANOVA, paired t-test and Tukey's test (alpha<0.05). There were significant differences between the two measurement modes and among materials. With compliance mode, the contraction stress of FF was the highest: 3.11 (0.13), followed by Z1: 2.91 (0.10) and Z2: 1.94 (0.09) MPa. When the instrument compliance is not allowed, the contraction stress of Z1 was the highest: 17.08 (0.89), followed by FF: 10.11 (0.29) and Z2: 9.46 (1.63) MPa. The tensile modulus for Z1, Z2 and FF was 2.31 (0.18), 2.05 (0.20), 1.41 (0.11) GPa, respectively. With compliance mode, the measured stress correlated with the axial shrinkage strain of composite; while without compliance the elastic modulus of materials played a significant role in the stress measurement.


Subject(s)
Chimera , Collodion , Compliance , Contracts , Displacement, Psychological , Elastic Modulus , Light , Polymerization , Polymers , Resins, Synthetic , Sprains and Strains
7.
Braz. dent. j ; 20(4): 319-324, 2009. tab, ilus, graf
Article in English | LILACS | ID: lil-536322

ABSTRACT

The purpose of this study was to compare the polymerization shrinkage stress of composite resins (microfilled, microhybrid and hybrid) photoactivated by quartz-tungsten halogen light (QTH) and light-emitting diode (LED). Glass rods (5.0 mm x 5.0 cm) were fabricated and had one of the surfaces air-abraded with aluminum oxide and coated with a layer of an adhesive system, which was photoactivated with the QTH unit. The glass rods were vertically assembled, in pairs, to a universal testing machine and the composites were applied to the lower rod. The upper rod was placed closer, at 2 mm, and an extensometer was attached to the rods. The 20 composites were polymerized by either QTH (n=10) or LED (n=10) curing units. Polymerization was carried out using 2 devices positioned in opposite sides, which were simultaneously activated for 40 s. Shrinkage stress was analyzed twice: shortly after polymerization (t40s) and 10 min later (t10min). Data were analyzed statistically by 2-way ANOVA and Tukey's test (a=5 percent). The shrinkage stress for all composites was higher at t10min than at t40s, regardless of the activation source. Microfilled composite resins showed lower shrinkage stress values compared to the other composite resins. For the hybrid and microhybrid composite resins, the light source had no influence on the shrinkage stress, except for microfilled composite at t10min. It may be concluded that the composition of composite resins is the factor with the strongest influence on shrinkage stress.


Este estudo comparou a contração de polimerização de resinas compostas fotoativadas por luz halógena (QTH) e diodo emissor de luz (LED). Foram confeccionados bastões de vidro (5,0 mm x 5,0 cm), e uma de suas extremidades sofreu jateamento com óxido de alumínio, sobre a qual foi aplicado um adesivo e fotoativado com luz halógena. Os bastões de vidro foram acoplados verticalmente, em pares, em uma máquina universal de ensaios (EMIC DL-2000) e as resinas compostas aplicadas no bastão inferior. A distância entre os bastões foi padronizada em 2 mm e um extensômetro foi acoplado a eles. As resinas foram fotoativadas (n=20), sendo 10 por QTH e 10 por LED utilizando dois aparelhos posicionados em lados opostos, acionados simultaneamente por 40 s. A tensão de contração foi analisada em dois momentos: logo após a polimerização (t40s) e 10 min após (t10min). A tensão de contração apresentada por todas as resinas foi maior em t10min do que em t40s, independente da fonte ativadora. A resina de micropartículas apresentou menores valores de tensão de contração com valores estatisticamente significantes em relação às demais resinas. Para as resinas híbrida e microhíbrida não houve influência da unidade ativadora sobre a tensão de contração, com exceção para a resina de micropartículas em t10min. Concluiu-se que a composição da resina composta foi o fator que mais interferiu na tensão de contração da resina composta.


Subject(s)
Composite Resins/radiation effects , Curing Lights, Dental/classification , Light-Curing of Dental Adhesives/methods , Dental Materials/radiation effects , Analysis of Variance , Acrylic Resins/chemistry , Acrylic Resins/radiation effects , Composite Resins/chemistry , Dental Stress Analysis , Dental Materials/chemistry , Dentin-Bonding Agents/chemistry , Dentin-Bonding Agents/radiation effects , Materials Testing , Nanoparticles/chemistry , Nanoparticles/radiation effects , Polyurethanes/chemistry , Polyurethanes/radiation effects , Resin Cements/chemistry , Resin Cements/radiation effects , Statistics, Nonparametric
8.
J. appl. oral sci ; 16(1): 30-34, Jan.-Feb. 2008. tab
Article in English | LILACS | ID: lil-472686

ABSTRACT

The aim of this study was to compare the shrinkage stress of composite resins by three methods. In the first method, composites were inserted between two stainless steel plates. One of the plates was connected to a 20 kgf load cell of a universal testing machine (EMIC-DL-500). In the second method, disk-shaped cavities were prepared in 2-mm-thick Teflon molds and filled with the different composites. Gaps between the composites and molds formed after polymerization were evaluated microscopically. In the third method, the wall-to-wall shrinkage stress of the resins that were placed in bovine dentin cavities was evaluated. The gaps were measured microscopically. Data were analyzed by one-way ANOVA and Tukey's test (alpha=0.05). The obtained contraction forces were: Grandio = 12.18 ± 0.428N; Filtek Z 250 = 11.80 ± 0.760N; Filtek Supreme = 11.80 ± 0.707 N; and Admira = 11.89 ± 0.647 N. The gaps obtained between composites and Teflon molds were: Filtek Z 250 = 0.51 ± 0.0357 percent; Filtek Supreme = 0.36 ± 0.0438 percent; Admira = 0.25 ± 0.0346 percent and Grandio = 0.16 ± 0.008 percent. The gaps obtained in wall-to-wall contraction were: Filtek Z 250 = 11.33 ± 2.160 µm; Filtek Supreme = 10.66 ± 1.211µm; Admira = 11.16 ± 2.041 µm and Grandio = 10.50 ± 1.224 µm. There were no significant differences among the composite resins obtained with the first (shrinkage stress generated during polymerization) and third method (wall-to-wall shrinkage). The composite resins obtained with the second method (Teflon method) differed significantly regarding gap formation.


Subject(s)
Animals , Cattle , Composite Resins/chemistry , Dental Materials/chemistry , Chemical Phenomena , Dental Cavity Preparation , Dental Marginal Adaptation , Dentin/ultrastructure , Materials Testing , Methacrylates/chemistry , Pressure , Polymers/chemistry , Polytetrafluoroethylene/chemistry , Stress, Mechanical , Surface Properties , Siloxanes/chemistry
9.
Journal of Korean Academy of Conservative Dentistry ; : 450-460, 2005.
Article in English | WPRIM | ID: wpr-73406

ABSTRACT

The aim of this study was to evaluate the effect of cavity shape, bond quality of bonding agent and volume of resin composite on shrinkage stress developed at the cavity floor. This was done by measuring the shear bond strength with respect to iris materials (cavity shape; adhesive-coated dentin as a high C-factor and Teflon-coated metal as a low C-factor), bonding agents (bond quality; Scotchbond(TM) Multi-purpose and Xeno(R)III) and iris hole diameters (volume; 1 mm or 3 mm in diameter x 1.5 mm in thickness). Ninety-six molars were randomly divided into 8 groups (2 x 2 x 2 experimental setup). In order to simulate a Class I cavity, shear bond strength was measured on the flat occlusal dentin surface with irises. The iris hole was filled with Z250 restorative resin composite in a bulk-filling manner. The data was analyzed using three-way ANOVA and the Tukey test. Fracture mode analysis was also done. When the cavity had high C-factor, good bond quality and large volume, the bond strength decreased significantly. The volume of resin composite restricted within the well-bonded cavity walls is also be suggested to be included in the concept of C-factor, as well as the cavity shape and bond quality. Since the bond quality and volume can exaggerate the effect of cavity shape on the shrinkage stress developed at the resin-dentin bond, resin composites must be filled in a method, which minimizes the volume that can increase the C-factor.


Subject(s)
Dentin , Iris , Molar
10.
Journal of Korean Academy of Conservative Dentistry ; : 346-352, 2004.
Article in Korean | WPRIM | ID: wpr-69267

ABSTRACT

The purpose of present study was to evaluate the polymerization shrinkage stress and cuspal deflection in maxillary premolars resulting from polymerization shrinkage of composites and compomers. Composites and compomers which were used in this study were as follows: Dyract AP, Z100, Surefil, Pyramid, Synergy Compact, Heliomolar, Heliomolar HB, and Compoglass F. For measuring of polymerization shrinkage stress, Stress measuring machine (R&B, Daejon, Korea) was used. One-way ANOVA analysis with Duncan's multiple comparison test were used to determine significant differences between the materials. For measuring of cuspal deflection of tooth, MOD cavities were prepared in 10 extracted maxillary premolars. And reduction of intercuspal distance was measured by strain measuring machine (R&B, Daejon, Korea) One-way ANOVA analysis with Turkey test were used to determine significant differences between the materials. Polymerization shrinkage stress is [Heliomolar, Z100, Pyramid 0.05).


Subject(s)
Bicuspid , Compomers , Polymerization , Polymers , Tooth , Turkey
11.
Journal of Korean Academy of Conservative Dentistry ; : 348-353, 2003.
Article in Korean | WPRIM | ID: wpr-111387

ABSTRACT

The purpose of present study was to evaluate the polymerization shrinkage stress and amount of linear shrinkage of composites and compomers for posterior restoration. For this purpose, linear polymerization shrinkage and polymerization stress were measured. For linear polymerization shrinklage and polymerization stress measurement, custom made Linometer (R&B, Daejon, Korea) and Stress measuring machine was used (R&B, Daejon, Korea). Compositers and compomers were evaluated; Dyract AP (Dentsply Detrey, Gumbh. German) Z100 (3M Dental Products, St. Paul, USA) Surefil (Dentsply Caulk, Milford, USA) Pyramid(Bisco, Schaumburg, USA) Synergy Compact (Coltene, Altstatten, Switzerland), Heliomolar (Vivadent/Ivoclar, Liechtenstein), and Compoglass (Vivadent Ivoclar/Liechtenstein) were used. 15 measurements were made for each material. Linear polymerization shrinkage or polymerization stress for each material was compared with one way ANOVA with Tukey at 95% levels of confidence. For linear shrinkage; Heliomolar, Surefil

Subject(s)
Compomers , Polymerization , Polymers
12.
Journal of Practical Stomatology ; (6)2001.
Article in Chinese | WPRIM | ID: wpr-543235

ABSTRACT

Objective:To examine the polymerization shrinkage stress of three universal hybrid composite resins by photo-elastic analysis.Method:Epoxide resin disks (d=80 mm,h=4 mm) with a cylindrical cavity (d=4 mm) in the middle were prepared.Composite resins of Charisma,TPH Spectrum and Esthet-X were respectively filled in the cavities for the formation of specimens.Eight specimens were made for each resin.The resin specimens were light cured for 40 s by Dentsply QHL75 Curing lite. Polymerization contraction stress was calculated based on the diameter of the isochromatic rings of first order obtained from the diameter of epoxide resin specimen at 1,2,3,4,5,10,20 and 30 min,1,24 and 48 h after curing. The statistical analysis was carried out with the Wilcoxon test.Results:Polymerization contraction stress rised rapidly in the first 10 min after curing. 1 and 24 h after curing the shrinkage stress(MPa) of Charisma were 2.893 6?0.1 and 4.190 4?0.1,while that of Esthet-X were 2.291 7? 0.1 and 3.143 9? 0.3 ,respectively.The shrinkage stress values of TPH spectrum was between those of Charisma and Esthet-X 24 h after curing. 79% specimens showed shrinkage stress releasing during 24 and 48 h after curing.Conclusion:The rates of the shrinkage stress of the three studied resin composites are different.

SELECTION OF CITATIONS
SEARCH DETAIL