Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Indian J Biochem Biophys ; 2022 Apr; 59(4): 486-490
Article | IMSEAR | ID: sea-221524

ABSTRACT

Gladiolus spikes with fully turgid petals need to have a longer shelf life to fetch a higher price as well as display value. To improve the life duration of ornamental flowers, the ability of plants to produce silver nanoparticles (AgNP) was exploited. The ability of plants to produce AgNP when treated with silver nitrate solutions was juxtaposed by using Gladiolus (cut flowers): (i) To find the appropriate concentration of AgNO3 suitable for increasing shelf-life of Gladiolus cut flowers; (ii) To prepare silver nanoparticle from AgNO3; and (iii) To confirm the formation of silver nanoparticle using UV-vis spectrophotometry. Two different reductants (dehydrogenases present at the surface of the plant cells and sucrose) demonstrated the reduction of Ag+ to generate AgNPs. DLS (Dynamic Light Scattering) study revealed the presence of NPs in the AgNO3 salt solution incubated with Gladiolus cut flowers. The DLS data also suggested that the size of AgNPs decreased with increasing concentration of AgNO3. In the present study, along with silver nitrate, sucrose was also used. The shelf life and display value of the cut Gladiolus can be increased and optimized by incubating it in sucrose solution in combination with AgNO3.

2.
Int J Pharm Pharm Sci ; 2020 Sep; 12(9): 1-8
Article | IMSEAR | ID: sea-206019

ABSTRACT

Objective: Hepatic cancer is known as primary liver cancer and hepatocellular carcinoma (HCC). Newly silver nanoparticles gained importance due to its advantages and multiple potential such as molecular imaging agent, antimicrobial, wound healing, anti-inflammatory and anticancer activity. The current study deals to assess therapeutic property silver nanoparticles (AgNPs) against diethylnitrosamine (DENA), and carbon tetrachloride (CCL4) induced hepatic cancer. Methods: Thirty male albino rats (200-250g) were distributed into four groups and hepatic cancer was induced with a single intraperitoneal dose of 200 mg/kg body weight of DENA. Two weeks later, animals received subcutaneous injections of CCl4 once a week in a dose of 3 ml/kg body weight for 6weeks. Serum biomarkers, antioxidants enzymes, inflammatory markers were evaluated to find the anti-proliferative potential of silver nanoparticles. Histological evaluation and microscopic reports were also done to document the results of the current work. Results: AgNPs significantly recover the serum marker enzymes of hepatic parameter AST, ALT, ALP, and total bilirubin and also decreased the levels of NO, IL-6 and TNF-α. Histopathological features also exhibited recovery of a hepatic architecture in cancer-induced rats. Moreover, the immunohistochemical investigation demonstrated that the levels of PCNA, and Caspase-3, which are hepatocarcinogenic markers, were significantly improved by AgNPs. Conclusion: These results concluded that AgNPs showed promising curing effects on hepatocellular ailments.

3.
Article | IMSEAR | ID: sea-188654

ABSTRACT

Introduction: The biological green synthesis of nanoparticles via nanobiotechnology processes have a significant potential to boost nanoparticles production without the use of harsh, toxic, and expensive chemicals commonly used in conventional physical and chemical processes. Annona muricata, a tropical plant belonging to family Annonaceae is one of the most used plants in folk medicine because of its many medicinal uses and therefore presents a strong candidate for use in green synthesis. Aims: The aim of this study was to optimize a method for the synthesis of Silver Nanoparticles (AgNPs) from ethanolic extracts of leaves of Annona muricata as well as to characterize the green synthesized AgNPs. Methodology: AgNPs were synthesized from Annona muricata leaves using AgNO3 solution. The AgNPs were characterized using spectroscopy and microscopy techniques. Results: The formed AgNPs had an absorption maximum at 429 nm using UV–Visible spectroscopy and were stable under different pH, temperature, and storage conditions. Fourier transform infrared analysis revealed the different functional groups responsible for the synthesis and stabilization of the AgNPs. Scanning electron microscopy analysis revealed a spherical nature of the synthesized AgNPs. Energy dispersive x-ray spectroscopy analysis showed presence of Ag, O, and Cl with Ag having the highest composition at 60%. X-Ray Diffraction and Dynamic Light Scattering revealed a crystalline nature of AgNPs with an average size of 87.36 nm and a polydispersity index of 0.16 respectively. Transmission Electron Microscopy analysis further confirmed the crystalline and spherical nature of the AgNPs. Conclusion: In this article, an efficient, eco-friendly and low-cost method for the synthesis and recovery of stable AgNPs using Annona muricata leaves ethanolic extracts as both a reducing and capping agent has been reported for the first time. The synthesized AgNPs could be promising candidates for many biomedical, clinical, engineering, and polymer applications.

4.
Mycobiology ; : 53-58, 2012.
Article in English | WPRIM | ID: wpr-729356

ABSTRACT

This research is concerned with the fungicidal properties of nano-size silver colloidal solution used as an agent for antifungal treatment of various plant pathogens. We used WA-CV-WA13B, WA-AT-WB13R, and WA-PR-WB13R silver nanoparticles (AgNPs) at concentrations of 10, 25, 50, and 100 ppm. Eighteen different plant pathogenic fungi were treated with these AgNPs on potato dextrose agar (PDA), malt extract agar, and corn meal agar plates. We calculated fungal inhibition in order to evaluate the antifungal efficacy of silver nanoparticles against pathogens. The results indicated that AgNPs possess antifungal properties against these plant pathogens at various levels. Treatment with WA-CV-WB13R AgNPs resulted in maximum inhibition of most fungi. Results also showed that the most significant inhibition of plant pathogenic fungi was observed on PDA and 100 ppm of AgNPs.


Subject(s)
Agar , Colloids , Fungi , Glucose , Meals , Nanoparticles , Plants , Silver , Solanum tuberosum , Zea mays
SELECTION OF CITATIONS
SEARCH DETAIL