Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Chinese Journal of Biotechnology ; (12): 89-103, 2022.
Article in Chinese | WPRIM | ID: wpr-927695

ABSTRACT

Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) is a specific Ser/Thr protein kinase in plants. SnRK2 can regulate the expression of downstream genes or transcription factors through phosphorylation of substrates to achieve stress resistance regulation in different tissue parts, and make plants adapt to adverse environment. SnRK2 has a small number of members and a molecular weight of about 40 kDa, and contains a conserved N-terminal kinase domain and a divergent C-terminal regulatory domain, which plays an important role in the expression of enzyme. This review summarized the recent research progresses on the discovery, structure, and classification of SnRK2, and its function in response to various stresses and in regulating growth and development, followed by prospecting the future research direction of SnRK2. This review may provide a reference for genetic improvement of crop stress resistance.


Subject(s)
Abscisic Acid , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Growth and Development , Plants/genetics , Protein Kinases , Protein Serine-Threonine Kinases/genetics , Stress, Physiological/genetics
2.
Genet. mol. biol ; 30(3,suppl): 866-871, 2007. ilus, tab
Article in English | LILACS | ID: lil-467265

ABSTRACT

SnRKs (Sucrose non-fermenting-1 related kinases) is a family of protein kinases found in many crops, such as Arabidopsis, rice, sugarcane, tomato and several other plant species. This family of proteins is also present in other organisms like Saccharomyces cerevisiae (sucrose non-fermenting-1 - Snf1) and in mammals (AMP-activated protein kinases - AMPKs). There is evidence that SnRKs play an important role in plant responses to nutritional and environmental stresses and that SnRKs also play a major role in controlling key enzymes in the biosynthetic pathways of plants. In this work, we identified 18 contigs and two singletons encoding putative SnRKs in the CitEST database. All of them present highly conserved N-terminal catalytic domain, which is found in the SnRKs families of several plant species. Through comparison with known SnRKs, we were able to classify them into three subfamilies.

SELECTION OF CITATIONS
SEARCH DETAIL