ABSTRACT
The present study evaluated the effects of various dosages of soybean isoflavone extract on lipid profiles, lipid peroxidation and antioxidant activities in streptozotocin-induced diabetic rats. The one normal control group was fed an AIN-76-based experimental diet and four diabetic groups were fed the same diet, supplemented with four different levels of soybean isoflavone extract for seven weeks. The daily dosages of pure isoflavone for four diabetic groups were set to be 0 mg (diabetic control), 0.5 mg (ISO-I), 3.0 mg (ISO-II) and 30.0 mg (ISO-III) per kilogram of body weight, respectively. The plasma total cholesterol levels and the TBA-reactive substances contents in the liver and kidney were significantly lowered in ISO-II and ISO-III groups compared to those in the diabetic control group. The levels of plasma HDL-cholesterol, plasma vitamin A and hepatic superoxide dismutase were significantly increased in those two groups compared with the diabetic control group. The present study demonstrated the possibility that the diets supplemented with 3.0 mg and 30.0 mg of soybean isoflavone extract may have beneficial effects on the plasma lipids, tissue lipid peroxidation and partly on antioxidant system in diabetic animals and there were no significant differences between the ISO-II and ISO-III groups. The results suggest that the effective daily dosage level of isoflavone for improving lipid metabolism in diabetic rats may be above 3.0 mg per kilogram body weight.
Subject(s)
Animals , Rats , Body Weight , Cholesterol , Diet , Kidney , Lipid Metabolism , Lipid Peroxidation , Liver , Plasma , Glycine max , Superoxide Dismutase , Vitamin AABSTRACT
The present study evaluated the effect of various dosages of soybean isoflavone extract on body weight changes, glucose tolerance and liver function in streptozotocin-induced diabetic rats. One group of normal rats (normal control) was fed an AIN-76-based experimental diet and four groups of diabetic rats were fed the same diet supplemented with four different levels of soybean isoflavone extract for seven weeks. The daily dosages of pure isoflavone for four diabetic groups were set to be 0 mg (diabetic control), 0.5 mg (ISO-I), 3.0 mg (ISO-II) and 30.0 mg (ISO-III) per kilogram of body weight, respectively. The daily consumption of isoflavone at the level of 3.0mg per kilogram of body weight resulted in the suppression of body weight loss and increased the survival rate of diabetic animals one and half times compared to that of the diabetic control group. Blood glucose levels in a fasting state and after the oral administration of glucose were significantly lower in the ISO-II group during the oral glucose tolerance test. The ISO-II group showed a tendency to elongate the gastrointestinal transit time. The activity of serum aminotransferases, indicator of liver function, was not negatively affected by any intake level of isoflavone. The present study demonstrated that the soybean isoflavone extract may be beneficial to diabetic animals by improving their glucose tolerance and suppressing weight loss without incurring hepatotoxicity at the daily dosage of 3.0 mg per kg of body weight.