Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Year range
1.
Journal of China Pharmaceutical University ; (6): 433-440, 2018.
Article in Chinese | WPRIM | ID: wpr-811741

ABSTRACT

@#A sandwiched electrochemical immunoassay based on the AuNPs@GSH-CdTe as a signal label, which formed by GSH-CdTe QDs and AuNPs, with dual signal amplified by reduced graphene oxide and AuNPs was proposed for the sensitive detection of prostate specific antigen(PSA). Through a sandwich immunoreaction, the target PSA and AuNPs@GSH-CdTe labeled Ab1 were captured to rGO/AuNPs-Ab2 surface. After the HNO3-dissolution step, square wave stripping voltammetry(SWSV)analysis of the captured CdTe QDs was used to quantify the concentration of PSA. In this system, AuNPs possessedlarge specific surface and good biocompatibility, which could effectively expand the amount of antigen and GSH-CdTe QDs loading and signals amplifying, while rGO played a synergistic amplification role due to its large specific surface. The proposed method showed good linearity ranging from 0. 5 to 200 ng/mL with the detection limits of 5. 0 pg/mL. It also showed excellent selectivity, good reproducibility, satisfactory stability. In addition, the method was successfully applied to the determination of real samples. The result was satisfactory and the recovery could fall in 98. 20%- 106. 2%, which represented a novel approach for versatile detection of tumor markers.

2.
Chinese Journal of Analytical Chemistry ; (12): 446-453, 2018.
Article in Chinese | WPRIM | ID: wpr-692269

ABSTRACT

A silver nanowires(AgNWs) flexible electrode was prepared using polydimethylsiloxane (PDMS) as the substrate and AgNWs as the conductive layer. It is easier to change the shapes and sizes of the flexible electrode due to its excellent stretchability and foldability. A square wave stripping voltammetry (SWSV) method for the detection of trace copper in water was established using the electrode as the working electrode.The characterization of AgNWs flexible electrode showed that the spread of AgNWs was uniform and the average resistance was 1.03 Ω. The data of electrochemical analysis showed that the properties of the electrode were superior to commercialized gold electrode and silver electrode. The effects of Bi3+concentration, supporting electrolyte,pH value, enrichment potential and enrichment time were determined and optimized. We achieved the sharpest and highest peak of the SWSV curves for the detection of Cu2+in the range of-0.3-0.3 V,which means the most sensitive detection, under the following conditions such as 0.5 mg/L Bi3+,0.1 mol/L support electrolyte tartaric acid-sodium tartrate solution (pH, 4.8), 0.6 V of enrichment potential, and 600 s of enrichment time. Under such conditions, the linear detection range of Cu2+concentration was from 0.001 mg/L to 0.100 mg/L and the detection limit was 9.27×10-5mg/L. The advantages of this detection method are fast speed,high sensitivity and wide detection range. Therefore,it can not only meet the requirements for the copper ion detection but also provide a new method or experimental basis for the detection of other metal ions in water. In addition, the AgNWs flexible electrode has great potential in detections under special circumstances or instantaneous detections due to its wonderful flexibility and biocompatibility.

3.
Chinese Journal of Analytical Chemistry ; (12): 1395-1401, 2015.
Article in Chinese | WPRIM | ID: wpr-481841

ABSTRACT

ZnO nanotubes were prepared via electrospinning the Zn ( AC ) 2-polyacrylonitrile-polyvinylpyrrolidone ( PAN-PVP) precursor, followed by thermal decomposition of the above polymers from the precursor fibers. SEM and XRD characterization confirmed that the as-prepared ZnO nanofibers presented the hollow nanotube form, which was composed of ZnO nanoparticles with the size of about 40 nm in wurtzite crystal structure. By mixing with graphene, the obtained ZnO-graphene composite modified glassy carbon electrode ( ZnO-RGO/GCE ) was successfully constructed by dip-coating, which was used for the determination of Pb2+in water. With the sensitive response of the ZnO-RGO/GC electrode to Pb2+in solution was demonstrated by square wave stripping voltammetry, the response pctential was at -0. 4V. Under the optimized conditions, a good linear relationship between peak current and Pb2+ concentration was obtained in the range of 2. 4×10-9-4. 8×10-7 mol/L (R=0. 9970) by 10 min preconcentration at -1. 0 V in 0. 1 mol/L HAc-NaAc buffer solution (pH=4. 6). The detection limit was 4. 8×10-10 mol/L (S/N>3). The ZnO-RGO/GC electrode had good stability. The practical analytical application of the ZnO-RGO modified electrode was assessed by the measurement of the actual water sample and the result was consistent with that obtained by ICP-MS.

4.
Chinese Journal of Analytical Chemistry ; (12): 985-990, 2014.
Article in Chinese | WPRIM | ID: wpr-452472

ABSTRACT

ZnO nanoparticle-containing carbon composite nanofiber ( ZnO-CNF ) was prepared by the electrospinning of the ZnCl2-PAN precursor, followed by preoxidation and carbonization. The ZnO nanoparticles were uniformly distributed on the surface of the carbon nanofiber with the size of 20-30 nm, confirmed by scanning electron microscopy ( SEM ) . The wettability of the ZnO-CNF was studied by water contact angle test. With Nafion as an additive, the ZnO-CNF modified electrode was successfully constructed by dip-coating. The surface morphology and electrochemical properties of the modified electrode were investigated by SEM and cyclic voltammetry. There was a sensitive response of the ZnO-CNF modified electrode on Pb ions in solution, demonstrated by square wave stripping voltammetry. Under the optimized conditions, a good linear relationship between peak current and Pb2+concentration was obtained in the range of 2. 4×10-10-2. 4×10-7 mol/L (R=0. 998) by 10 min preconcentration at -1. 0 V in 0. 1 mol/L NaAc buffer solution (pH=4. 6). The detection limit was 4. 8×10-11 mol/L. The practical analytical application of the ZnO-CNF modified electrode was assessed by the measurement of the actual water sample and the result was consistent with that obtained by ICP-MS.

5.
Korean Journal of Nuclear Medicine ; : 336-343, 2000.
Article in Korean | WPRIM | ID: wpr-84485

ABSTRACT

PURPOSE: Thallous-201 chloride produced at Korea Cancer Center Hospital(KCCH) is used in detecting cardiovascular disease and cancer. Thallium impurity can cause emesis, catharsis and nausea, so the presence of thallium and other metal impurities should be determined. According to USP and KP, their amounts must be less than 2 ppm in thallium and 5 ppm in total. In this study, the detection method of trace amounts of metal impurities in [201Tl]TlCl injection with polarography was optimized without environmental contamination. MATERALS AND METHODS: For the detection of metal impurities, Osteryoung Square Wave Stripping Voltammetry method was used in Bio-Analytical System (BAS) 50W polarograph. The voltammetry was composed of Dropping Mercury Electrode (DME) as a working electrode, Ag/AgCl as a reference electrode and Pt wire as a counter electrode. Square wave stripping method, which makes use of formation and deformation of amalgam, was adopted to determine the metal impurities, and pH 7 phosphate buffer was used as supporting electrolyte. RESULTS: T1, Cu and Pb in thallous-201 chloride solution were detected by scanning from 300 mV to -800 mV. Calibration curves were made by using TlNO3, CuSO4 and Pb(NO3)2 as standard solutions. Tl was confirmed at -450 mV peak potential and Cu at -50 mV. Less than 2 ppm of Tl and Cu was detected and Pb was not detected in KCCH-produced thallous-201 chloride injection. CONCLUSION: Detection limit of thallium and copper is approximately 50 ppb with this method. As a result of this experiment, thallium and other metal impurities in thallous-201 chloride injection, produced at Korea Cancer Center Hospital, are in the regulation of USP and KP. Polarograph could be applied for the determination of metal impurities in the quality control of radiopharmaceuticals conveniently without environmental contamination.


Subject(s)
Calibration , Cardiovascular Diseases , Catharsis , Copper , Electrodes , Hydrogen-Ion Concentration , Korea , Limit of Detection , Metals, Heavy , Nausea , Polarography , Quality Control , Radiopharmaceuticals , Thallium , Vomiting
6.
Chinese Traditional Patent Medicine ; (12)1992.
Article in Chinese | WPRIM | ID: wpr-577298

ABSTRACT

AIM:A voltammetric method was developed for the determination of salvianolic acid B using a carbon nanotube paste electrode.And the separation process of salvianolic acid B was detected. METHODS: In Britton-Robinson buffer solution of pH(1.81),the square wave stripping voltammetric method was used to determine salvianolic acid B. RESULTS: The proposed method was verified by an established HPLC method,and it was applied to determining salvianolic acid B in eluent of eluting extracts of Radix salvia Miltiorrhiza from SP-207 colunm with ethanol solution,and the results were satisfied. CONCLUSION: A new method for determining salvianolic acid B was developed,and the proposed method would be used as an on-line quality control method for detecting of salvianolic acid B in eluting extracts of Radix salvia Miltiorrhiza in the future.

SELECTION OF CITATIONS
SEARCH DETAIL