Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Braz. j. med. biol. res ; 53(9): e9481, 2020. tab, graf
Article in English | LILACS, ColecionaSUS | ID: biblio-1132549

ABSTRACT

Visuospatial memory (VSM) is the ability to represent and manipulate visual and spatial information. This cognitive function depends on the functioning of the hippocampal formation (HF), located in the medial portion of the temporal cortex. The present study aimed to investigate whether there is an association between the volume of the HF and performance in VSM tests. High-resolution structural images (T1) and neuropsychological tests evaluating VSM were performed on 31 healthy individuals. A VSM index was created by grouping 5 variables from 5 tasks (4 from the CANTAB battery and 1 from the Rey-Osterrieth Complex Figure test). Multiple linear regression models using the volumes of HF subregions as independent variables and the VSM index as the dependent variable were conducted to test the hypothesis that memory performance could be predicted by HF volumes. We also conducted analyses to explore the role of covariates that may mediate this relationship, specifically age and intelligence quotient (IQ). We found significant associations between the hippocampal subregions of the left hemisphere and the VSM index (F(7,22)=2.758, P=0.032, R2a=0.298). When IQ was accounted for as a covariate, we also found significant results for the right hemisphere (F(8,21)=2.804, P=0.028, R2a=0.517). We concluded that the bilateral hippocampal formations contributed to performance on VSM tasks. Also, VSM processing is essential for a diverse set of daily activities and may be influenced by demographic variables in healthy subjects.


Subject(s)
Humans , Hippocampus , Memory , Magnetic Resonance Imaging , Neuropsychological Tests
2.
Journal of the Korean Society of Biological Psychiatry ; : 81-86, 2014.
Article in Korean | WPRIM | ID: wpr-725049

ABSTRACT

OBJECTIVES: Total intracranial volume (TIV) is a major nuisance of neuroimaging research for interindividual differences of brain structure and function. Authors intended to prove the reliability of the atlas scaling factor (ASF) method for TIV estimation in FreeSurfer by comparing it with the results of manual tracing as reference method. METHODS: The TIVs of 26 normal children and 26 children with attention-deficit hyperactivity disorder (ADHD) were obtained by using FreeSurfer reconstruction and manual tracing with T1-weighted images. Manual tracing performed in every 10th slice of MRI dataset from midline of sagittal plane by one researcher who was blinded from clinical data. Another reseacher performed manual tracing independently for randomly selected 20 dataset to verify interrater reliability. RESULTS: The interrater reliability was excellent (intraclass coefficient = 0.91, p < 7.1e-07). There were no significant differences of age and gender distribution between normal and ADHD groups. No significant differences were found between TIVs from ASF method and manual tracing. Strong correlation between TIVs from 2 different methods were shown (r = 0.90, p < 2.2e-16). CONCLUSIONS: The ASF method for TIV estimation by using FreeSurfer showed good agreement with the reference method. We can use the TIV from ASF method for correction in analysis of structural and functional neuroimaging studies with not only elderly subjects but also children, even with ADHD.

SELECTION OF CITATIONS
SEARCH DETAIL