Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Electron. j. biotechnol ; 27: 1-7, May. 2017. tab, ilus, graf
Article in English | LILACS | ID: biblio-1009846

ABSTRACT

Background: Genetic diversity studies are important for the selection of parents with a greater combination capacity that, when crossed, increase the chances of obtaining superior genotypes. Thus, 26 polymorphic simple sequence repeat (SSR) primers were used to assess the genetic diversity of 140 individual samples from 12 diploid sugar beet pollinators (pollen parents) and two cytoplasmic male sterile (cms) lines (seed parents). Eight pollinators originated from three research centers in the United States Department of Agriculture, while four pollinators and cms lines were from the Institute of Field and Vegetable Crops, Novi Sad, Serbia. Results: In total, 129 alleles were obtained, with a mean of 3.2 alleles per SSR marker. The observed heterozygosity ranged from 0.00 to 0.87 (mean = 0.30). Expected heterozygosity and Shannon's information index were the lowest for marker BQ590934 and the highest for markers SB15s and FDSB502s; the same markers were the most informative, with PIC values of 0.70 and 0.69, respectively. Three private alleles were found in pollinator EL0204; two in pollinator C51; and one in pollinators NS1, FC221, and C93035. Molecular variance showed that 77.34% of the total genetic variation was attributed to intrapopulation variability. Cluster and correspondence analysis grouped sugar beet pollinators according to the breeding centers, with few exceptions, which indicate that certain amount of germplasm was shared, although centers had their own breeding programs. Conclusions: The results indicate that this approach can improve the selection of pollinators as suitable parental components and could further be applied in sugar beet breeding programs.


Subject(s)
Pollen/genetics , Genetic Variation , Beta vulgaris/genetics , Polymorphism, Genetic , Seeds/genetics , Selection, Genetic , Breeding , Polymerase Chain Reaction , DNA, Plant/genetics , Microsatellite Repeats , Pollination , Genotype
2.
Braz. arch. biol. technol ; 60: e17160374, 2017. tab, graf
Article in English | LILACS | ID: biblio-951445

ABSTRACT

ABSTRACT The rhizosphere zone has been defined as the volume of soil directly influenced by the presence of living plant roots or soil compartment influenced by the root. During the growing season of 2014, the rhizobacteria of 23 sugar beet plants sampled from 12 sites in the west and north west of Iran were inventoried. Using a cultivation-dependent approach, a total of 217 bacteria were isolated from the rhizosphere. The bacterial isolates were tentatively grouped and documented based on polyacrylamide gel electrophoresis of whole-cell proteins and were found to represent 43 different protein electrotypes. The majority of the fingerprint types were found only on a single occasion. Fifty-nine percent of the strains belonged to the five bacterial species and identified as Stenotrophomonas maltophilia, Pseudomonas fluorescens, Pseudomonas aeruginosa, Stenotrophomonas rhizophila and Serratia marcescens. Minor occurring fingerprint types were identified as Flavobacterium spp, Erwinia spp, Acetobacter spp, Agrobacterium spp, Enterobacter spp, Aeromonas spp and Bacillus spp.

3.
Chinese Journal of Biotechnology ; (12): 880-888, 2016.
Article in Chinese | WPRIM | ID: wpr-242290

ABSTRACT

Cellulosic ethanol, with the advantages of renewable resource, cleanliness and safety, is the mainstream of new energy development and has obtained extensive attention worldwide. In this review, the biological characteristics of beets were introduced, and then the superiority and application progress of beets and its by-product sugar beet pulp in the bioethanol production were stated. At last, cellulosic ethanol production coupled with the component separation and comprehensive utilization of beet pulp was proposed.


Subject(s)
Beta vulgaris , Chemistry , Biofuels , Cellulose , Chemistry , Ethanol , Chemistry
4.
Electron. j. biotechnol ; 14(2): 6-6, Mar. 2011. ilus, tab
Article in English | LILACS | ID: lil-591936

ABSTRACT

Background: Owing to the growing interest in biofuels, the concept of a biorefinery where biomass is converted to a variety of useful products is gaining ground. We here present how distillery waste is combined with a by-product from a sugar production, molasses, to form a medium for the growth of Lactobacillus plantarum with yields and biomass densities comparable with conventional industrial media. Such approach enables a cost-effective utilization of the problematic wastewater from ethanol and a by-product from sugar production. It is the first approach that attempts to find low-cost media for the production of Lactobacillus plantarum biomass. Results: This study suggests that sieved wheat stillage enriched by adding 1.77 g/l yeast extract and 10 percent molasses (v/v), with NH4OH used for pH adjustment, may be used as a media for large-scale cultivation of L. plantarum. Such composition of the medium permits a high density of lactic acid bacteria (1.6 x 10(10) cfu/ml) to be achieved. Conclusions: The use of a fermentation medium consisting of distillery wastewater and molasses to obtain value-added products (such as LAB biomass and lactic acid) is a possible step for classical ethanol production to move towards a biorefinery model production in which all by and waste products are utilized to increase produced values and reduce waste production. This enables a cost-effective utilization of the problematic wastewater from ethanol and sugar production.


Subject(s)
Hydroxides/metabolism , Lactobacillus plantarum/metabolism , Molasses , Triticum/metabolism , Biomass , Culture Techniques , Distillation , Ethanol , Fermentation , Hydrogen-Ion Concentration , Industrial Waste , Lactic Acid , Yeasts/metabolism
5.
J Environ Biol ; 2009 Jan; 30(1): 161-163
Article in English | IMSEAR | ID: sea-146165

ABSTRACT

In this study, rhamnolipid biosurfactant production was investigated in eighteen strains of Pseudomonas spp.. Rhamnolipid by these strains was determined by a spectrophotometric method in nutrient broth medium (NB). From the 18 strains screened, two Pseudomonas strains (Pseudomonas luteola B17 and Pseudomonas putida B12) which had produced the highest percentage yield of rhamnolipid were examined for rhamnolipid production at different incubation times (24, 48 and 72 hr) and different sugar beet molasses concentrations [1-5 % w/v concentration (1-5 g molasses/100 ml water)]. The rhamnolipid production increased with the increase in the concentration of molasses and maximum production occurred when 5 % (w/v) of molasses were used. At the same time, maximum rhamnolipid production occurred after 72 hr of incubation. When the amount of rhamnolipid produced at different incubation times (24, 48 and 72 hr) and with different concentrations of molasses [1-5 % w/v concentration (1-5 g molasses/100 ml water)] by Pseudomonas spp.; was compared, no significant difference in amount of production was seen. These studies show that the waste product from sugar industry may be suggested for important biotechnological processes such as rhamnolipid production.

6.
Progress in Biochemistry and Biophysics ; (12)2006.
Article in Chinese | WPRIM | ID: wpr-593448

ABSTRACT

Insects pests and weeds are the main factors that reduce the yield of sugar beet. Genetic engineering breeding is an effective method to breed insect-resisitant and herbicide-resisitant sugar beet. A transformation system for foreign genes in sugar beet chloroplast was established. The expression of the foreign genes can confers resistance in transgenic sugar beet plants to insects pests and weeds. The chloroplast transformation vector pSKARBt/bar, which carries Bt cry1Ac gene and bar gene expression cassettes, was constructed by using molecular method. The Bt gene expression cassette contained the 3.5 kb Bt cry1Ac gene under the control of psbA promoter and terminator cloned from sugar beet chloroplast genome. The bar gene expression cassette contained the bar gene, 16 S promoter and terminator cloned from sugar beet chloroplast genome, The atpB and rbcL gene cloned from sugar beet chloroplast genome were used as homologous fragment, the bar gene was the selective marker. Plasmid pSKARBt/bar were transformed into the petioles of sugar beet with particle bombardment method. The petioles were planced onto the shoot-inducing selection medium which contained spectinomycin (20 mg/L), 6-BA (1.5 mg/L) and NAA (0.2 mg/L) at first. And when the green shoots regenerated, the green shoots were transfered into the shoot-propagation medium for optimal shoot development which contained spectinomycin (20 mg/L) and 6-BA (0.5 mg/L) and NAA (1.0 mg/L) one subculture at 20-day intervals, and then the shoots were transfered into the shoot-propagation medium for optimal shoot development with herbicide (PPT 10 mg/L) several subcultures. The shoots were transfered into the root-induction medium with herbicide (PPT 10 mg/L) and the transgenic plants were obtained at last. The transgenic sugar beet plants were testsed by PCR and Southern blot. The results showed that the Bt gene and bar gene had been transferred into the chloroplast genome of sugar beet. The transgenic plants had tolerance to both PPT and bioassays testsed. The insecticidal activity (the mortality of larvaes was 33%~80%) and herbicide resistance of the transgenic plants indicated that the relevant protein had been expressed already in sugar beet. The study showed that the bar gene can also be used as an efficient selective marker gene besides antibiotic resistant markers in plant transformation. Efficient transformation system in sugar beet chloroplast had been established.

SELECTION OF CITATIONS
SEARCH DETAIL