Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Korean Journal of Physical Anthropology ; : 167-180, 2008.
Article in English | WPRIM | ID: wpr-166932

ABSTRACT

Chios gum mastic (CGM) is a resinous exudate obtained from the stem and the main leaves of Pistacia lenticulus tree native to Mediterranean areas. Recently it reported that CGM induced apoptosis in a few cancer cells in vitro. It has been reported that the synthetic chenodeoxycholic acid (CDCA) derivatives showed apoptosis-inducing activity on various cancer cells in vitro. This study was undertaken to investigate the synergistic apoptotic effect of co-treatment with a natural product, CGM and a CDCA derivative, HS-1200 on human osteosarcoma (HOS) cells. To investigate whether the co-treatment of CGM and HS-1200 compared with each single treatment efficiently reduced the viability of HOS cells, MTT assay was conducted. Induction and augmentation of apoptosis were confirmed by DNA electrophoresis, Hoechst staining and DNA hypoploidy, Westen blot analysis and immunofluorescent staining were performed to study the alterations of the expression level and translocation of apoptosis-related proteins in co-treatment. Furthermore, proteasome activity and mitochondrial membrane potential (MMP) change were also assayed. In this study, HOS cells co-treated with CGM and HS-1200 showed several lines of apoptotic manifestation whereas each single treated HOS cells did not. Although the single treatment of 40 microgram/mL CGM or 25 micrometer HS-1200 for 24 h did not induce apoptosis, the cotreatment of them induced prominently apoptosis. Therefore our data provide the possibility that combination therapy of CGM and HS-1200 could be considered as a novel therapeutic strategy for human osteosarcoma.


Subject(s)
Humans , Apoptosis , Chenodeoxycholic Acid , DNA , Electrophoresis , Exudates and Transudates , Gingiva , Membrane Potential, Mitochondrial , Osteosarcoma , Pistacia , Proteasome Endopeptidase Complex , Proteins , Resins, Plant , Trees
2.
Korean Journal of Physical Anthropology ; : 363-373, 2007.
Article in English | WPRIM | ID: wpr-59238

ABSTRACT

Bile acids and their synthetic derivatives induced apoptosis in various kinds of cancer cells and anticancer effects. It has been reported that the synthetic chenodeoxycholic acid (CDCA) derivatives showed apoptosis-inducing activity on various cancer cells in vitro. It wasn't discovered those materials have apoptosis-inducing effects on G361 human melanoma cells. The present study was done to examine the synthetic bile acid derivatives, HS-1199 and HS-1200, induced apoptosis on G361 cells and such these apoptosis events. The viability of G361 cells was assessed by the MTT assay. Induction of apoptosis was confirmed by DNA electrophoresis and Hoechst staining. Westen blot analysis and immunofluorescent staining were performed to study the alterations in expression level and translocation of apoptosis-related proteins. Proteasome activity and mitochondrial membrane potential (MMP) change were also assayed. Tested G361 cells showed several lines of apoptotic manifestation such as activation of caspase-3, DFF and PARP, DNA degradation (HS-1200 only), nuclear condensation, inhibition of proteasome activity, reduction of mitochondrial membrane potential, and the release of cytochrome c and AIF to cytosol. Between two synthetic derivatives, HS-1200 showed stronger apoptosis-inducing effect than HS-1199 did. Taken collectively, we here demonstrated for the first time that synthetic CDCA dedrivatives induce apoptosis of human melanoma cells through the proteasome, mitochondria and caspase pathway. Therefore our data provide the possibility that HS-1200 could be considered as a novel therapeutic strategy for human melanoma cells from its powerful apoptosis-inducing activity.


Subject(s)
Humans , Apoptosis , Bile , Bile Acids and Salts , Caspase 3 , Chenodeoxycholic Acid , Cytochromes c , Cytosol , DNA , Electrophoresis , Melanoma , Membrane Potential, Mitochondrial , Mitochondria , Proteasome Endopeptidase Complex
SELECTION OF CITATIONS
SEARCH DETAIL