Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 433
Filter
1.
Chinese Pharmacological Bulletin ; (12): 155-161, 2024.
Article in Chinese | WPRIM | ID: wpr-1013612

ABSTRACT

Aim To investigate the effect of Xuefu Zhuyu decoction on transforming growth factor-β1(TGF-β1 ) -induced endothelial-to-mesenchymal transition (EndMT) of pulmonary microvascular endothelial cells ( PMVEC), and further analyze the mechanism related to the TGF-β1/Smad signaling pathway. Method To construct an EndMT cell model, PMVEC was treated with TGF-β1 (5 μg · L

2.
China Pharmacy ; (12): 671-677, 2024.
Article in Chinese | WPRIM | ID: wpr-1013100

ABSTRACT

OBJECTIVE To investigate the intervention effect and potential mechanism of breviscapine on hepatic fibrosis (HF) in rats based on the transforming growth factor-β(1 TGF-β1)/Smad2/extracellular signal-regulated protein kinase 1(ERK1) and Kelch-like epichlorohydrin-associated protein 1(Keap1)/nuclear factor-erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1) pathways. METHODS Totally 60 rats were randomly divided into normal control group, model group, breviscapine low-dose, medium-dose and high-dose groups (5.4, 10.8, 21.6 mg/kg), and colchicine group (positive control, 0.45 mg/kg), with 10 rats in each group, half male and half female. Except for the normal control group, HF model of the other groups was induced by carbon tetrachloride. Subsequently, each drug group was given corresponding medicine by gavage once a day for 28 days. The liver appearance of rats in each group was observed and their liver coefficients were calculated. The levels of alanineaminotransferase (ALT) and aspartate aminotransferase (AST)in serum, those of ALT, AST, superoxide dismutase (SOD),malondialdehyde (MDA) and glutathione peroxidase (GSH- Px) in liver tissue were detected. The liver tissue inflammatory and fibrotic changes were observed. The protein and mRNA expressions of TGF-β1, Smad2, ERK1, Nrf2, Keap1 and HO-in liver tissue were detected. RESULTS Compared with the normal control group, the model group showed large areas of white nodular lesions in the liver, obvious inflammatory cell infiltration and collagen fiber deposition. The body weight, the levels of SOD and GSH-Px in liver tissue, the protein and mRNA expressions of Nrf2 and HO-1 were significantly lowered in the model group (P<0.05); the liver coefficient, the percentage of Masson staining positive area, ALT and AST levels of serum and liver tissue, MDA level of liver tissue, the protein and mRNA expressions of TGF-β1, Smad2, ERK1 and Keap1 were significantly increased (P<0.05). Compared with the model group, the liver lesions of rats in each drug group were improved, and the above quantitative indexes were generally reversed (P<0.05). CONCLUSIONS Breviscapine has a good intervention effect on HF rats, which may be related to inhibiting TGF-β1/Smad2/ERK1 pathway for anti-fibrosis and regulating Keap1/Nrf2/HO-1 pathway to inhibit oxidative stress.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 57-65, 2024.
Article in Chinese | WPRIM | ID: wpr-1012693

ABSTRACT

ObjectiveTo observe the therapeutic effect of Shugan Huazheng prescription on hepatic fibrosis model rats induced by carbon tetrachloride (CCl4) and explore whether it plays its role through hypoxia-induced factor-1α/vascular endothelial growth factor/transforming growth factor-β1 (HIF-1α/VEGF/TGF-β1) pathway. MethodA total of 54 male SPF SD rats were randomly divided into six groups: blank group, model group, colchicine group (0.2 mg·kg-1), and high-, medium-, and low-dose groups (29.52, 14.76, and 7.38 g·kg-1) of Shugan Huazheng prescription, with nine rats in each group. The molding was conducted three times a week for eight weeks. Administration began the day after the first injection, and the drug intervention was once a day for eight weeks. On the day after the last administration, the rats were deprived of food and water, and they were killed the next day, during which the physiological status of each group of rats was dynamically monitored. The pathological changes in the liver were observed by hematoxylin-eosin (HE) staining, and the content of hydroxyproline (HYP) and angiotensin Ⅱ (AngⅡ) in liver tissue were detected by enzyme-related immunosorbent assay (ELISA). Real-time fluorescent quantitative PCR (Real-time PCR) was used to determine the mRNA expression levels of HIF-1α, VEGF, and TGF-β1 in liver tissue, and immunohistochemical method (IHC) and Western blot were used to detect the protein expression levels of HIF-1α, VEGF, and TGF-β1 in liver tissue. ResultCompared with the blank group, the overall condition of rats in the model group decreased significantly. The proliferation of connective tissue and the increase in adipose cells between hepatocytes were obvious. The content of HYP and Ang was increased. The mRNA and protein expressions of HIF-1α, VEGF, and TGF-β1 were increased to varying degrees (P<0.05). Compared with the model group, the proliferation of connective tissue and inflammatory cell infiltration in the liver tissue of colchicine and Shugan Huazheng prescription groups were reduced. The content of HYP and Ang was decreased. The mRNA and protein expression levels of HIF-1α, VEGF, and TGF-β1 were decreased, and the colchicine group and high-dose group of Shugan Huazheng prescription were the most significant (P<0.05). ConclusionShugan Huazheng prescription has an obvious therapeutic effect on CCl4-induced hepatic fibrosis model rats. Its therapeutic mechanism may be related to the regulation of the HIF-1α/VEGF/TGF-β1 signaling pathway and the improvement of hepatic hypoxia, vascular remodeling, and the syndrome of Qi deficiency and blood stasis in hepatic fibrosis.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 56-63, 2024.
Article in Chinese | WPRIM | ID: wpr-1003408

ABSTRACT

ObjectiveBy observing the effect of Qianyang Yuyin granules on the phenotype of renal tubule epithelial cells, the intervention of Qianyang Yuyin granule on renal interstitial fibrosis was investigated. MethodThe renal tubular epithelial cells (HK-2) were treated with different concentrations of transforming growth factor (TGF)-β1 (5, 10, 15, 20, 25 μg·L-1) for 24 hours, and cell morphology and growth state were observed with an inverted phase contrast microscope. The 20 μg·L-1 was selected as the most appropriate concentration of TGF-β1 according to Western blot results for subsequent experiments. HK-2 cells were divided into six groups: blank group, TGF-β1 group (concentration of 20 μg·L-1), low, medium, and high dose Qianyang Yuyin granule groups (concentration of 0.5, 1, 2 g·L-1), and valsartan group (1 × 10-5 mol·L-1). The cell activity was measured by cell proliferation and cell counting kit-8 (CCK-8). The cell migration ability was detected by scratch test. The Transwell method was used to detect the invasiveness of cells. Western blot was used to detect levels of fibronectin (FN), E-cadherin, α-smooth muscle activator (α-SMA), Vimentin, collagen type Ⅰ(Col Ⅰ), collagen type Ⅳ(Col Ⅳ), and other related proteins. ResultTGF-β1 stimulating epithelial-mesenchymal transition (EMT) in renal tubular epithelial cells was time- and concentration-dependent. Compared with the blank group, higher concentration in the TGF-β1 group indicates longer intervention time and more obvious long spindle change of cells, and the migration and invasion ability of the cells was significantly enhanced. The protein expression level of FN, α-SMA, Vimentin, Col Ⅰ, and Col Ⅳ increased significantly (P<0.05, P<0.01), while the expression level of E-cadherin protein decreased (P<0.05). Compared with the TGF-β1 group, Qianyang Yuyin granule groups could maintain normal cell morphology, and the migration and invasion ability of the cells was inhibited. The protein expression level of FN, α-SMA, Vimentin, Col Ⅰ, and Col Ⅳ decreased (P<0.05, P<0.01), and the expression of E-cadherin protein was significantly restored (P<0.05). ConclusionQianyang Yuyin granule can reverse TGF-β1-induced interstitial transformation of renal tubular epithelial cells by reducing the phenotypic expression of mesenchymal cells and increasing the phenotypic expression of epithelial cells.

5.
Chinese Journal of Hepatobiliary Surgery ; (12): 278-284, 2023.
Article in Chinese | WPRIM | ID: wpr-993323

ABSTRACT

Objective:To investigate the therapeutic effect and potential molecular mechanisms of cyclin-dependent kinase inhibitor-73 (CDKI-73), the Rab11 inhibitor, on liver fibrosis.Methods:Human LX2 cells were divided into four groups: negative control group, transforming growth factor-β (TGF-β) group, CDKI-73 group and TGF-β+ CDKI-73 group. Fifteen 5-week-old female C57 mice with body weight of (18.04±0.62) g were divided into 3 groups with 5 mice in each group: control group (intraperitoneal injection of olive oil + vehicle gavage), carbon tetrachloride (CCl 4) group (intraperitoneal injection of CCl 4 + vehicle gavage) and CCl 4+ CDKI-73 group (intraperitoneal injection of CCl 4+ CDKI-73 gavage). Another 15 5-week-old female C57 mice with body weight of (18.06±0.34) g were divided into 3 groups with 5 mice in each group: sham operation group (Sham), bile duct ligation (BDL) group + vehicle group (BDL+ vehicle gavage) and bile duct ligation+ CDKI-73 group (BDL+ CDKI-73 gavage). The expression of α-smooth muscle actin (α-SMA) and fibronectin(FN)in LX2 cells were analyzed by Western blot. Masson and Sirius red were used to examine the liver fibrosis after CDKI-73 treatment in vivo. Immunohistochemistry (IHC) was utilized to examine the expression of α-SMA in mice liver. Results:Collagen content assessed by Sirius red and Masson staining and α-SMA expression evaluated by IHC were all increased in CCl 4 group compared with control group ( q=38.47, 24.99, 36.79). Moreover, the collagen content and α-SMA expression in CCl 4 + CDKI-73 treatment group were obviously decreased compared with CCl 4 group ( q=24.72, 14.87, 27.50), and the differences were statistically significant (all P<0.001). Compared with Sham group, collagen content and α-SMA expression in bile duct ligation group were increased ( q=28.23, 41.01, 44.16). Furthermore, in BDL group, after treatment with CDKI-73, the collagen content and α-SMA expression were notably decreased ( q=22.88, 34.31 and 33.97, all P<0.001). Consistent with in vivo results, the relative expression levels of α-SMA and FN protein in TGF-β group were higher than those in TGF-β+ CDKI-73 group (α-SMA: 3.71±0.34 vs. 1.28±0.31; FN: 3.21±0.39 vs. 0.83±0.06, all P<0.001). The mRNA relative expression levels of α-SMA and FN in TGF-β group were higher than those in TGF-β+ CDKI-73 group, and the differences were statistically significant ( P<0.001). However, the relative expression of TGF-β receptor Ⅱ protein in CDKI-73 group was higher than those in negative control group (4.68±0.63 vs. 1.00±0.22, P=0.004). The relative expression level of phosphorylated SMAD2 in TGF-β+ CDKI-73 group was lower than those in TGF-β group (1.67±0.24 vs. 3.99±0.44, P<0.001). Transwell assay showed that 0.5 μmol/L CDKI-73 could effectively inhibit the migration of LX2 cells, and the inhibitory ability became stronger with the increase of CDKI-73 concentration. Conclusion:CDKI-73 can inhibit the activation of hepatic stellate cells and liver fibrosis by inhibiting Rab11-dependent TGF-β signaling pathway both in vivo and in vitro.

6.
Chinese Journal of Endocrine Surgery ; (6): 166-169, 2023.
Article in Chinese | WPRIM | ID: wpr-989918

ABSTRACT

Objective:To probe into Rab25 Gene’s Effect on TGF-β inhibition of proliferation, invasion and epithelial mesenchymal transformation (EMT) of breast cancer MDA-MB-231 cells and explore its molecular mechanism.Methods:The experiment was divided into three groups: control group,TGF-β Group and si-Rab25 group. TGF-β induced MDA-MB-231 cell model of EMT was built. CCK-8 assay was used to detect cell proliferation. Transwell assay was used to detect the ability of cell invasion and migration.Western blot was used to detect the changes of related proteins in each group.Results:After stimulating MDA-MB-231 cells with TGF-β, Rab25 gene was highly expressed. Compared with TGF-β group (57.48±%3.62%), the migration ability and invasion ability of cells in si-Rab25 group (33.49%±2.93%) decreased by 41.7%, with a significant difference ( P<0.05). Compared with TGF-β group (153.21%±4.17%), the proliferation ability of cells in si-Rab25 group (115.32%±5.69%) decreased by 24.73%, with a significant difference ( P<0.05). The expression of MDA-MB-231 fine EMT related protein in si-Rab25 group was significantly different from that in TGF-β group ( P<0.05). The expression of p-AKT and Snail protein in si-Rab25 group was significantly lower than that in TGF-β group ( P<0.05) . Conclusions:Rab25 gene is highly expressed in MDA-MB-231 cells. Silencing Rab25 gene can activate AKT signal pathway, inhibit Snail protein expression, regulate EMT related protein expression, and inhibit EMT transformation.

7.
Chinese Herbal Medicines ; (4): 251-262, 2023.
Article in English | WPRIM | ID: wpr-982501

ABSTRACT

OBJECTIVE@#Hypertrophic scars (HS) are a variety of skin tissue fibrosis disease that occurs in human skin, the effective therapeutic method of which is still inaccessible up to now. As a bioactive constituent of a well-known medical plant, Salvia miltiorrhiza (Danshen in Chinese), tanshinone IIA (TSA) is reported to inhibit cell proliferation in HS. Therefore, the aim of this study was to prepare TSA self-soluble microneedles to strengthen its dermal retention and break through the difficulty of significantly thickening epidermal connective tissue and stratum corneum at the HS site. The possible mechanism of action in suppressing HS was studied using human skin fibroblasts (HSF).@*METHODS@#Tanshinone IIA self-dissolving microneedles (TSA-MN) was prepared using a negative mold casting method. The prescription process of microneedle was optimized by Box-Behnken effect surface method. Different media were selected to investigate the ability of transdermal absorption and in vitro release. Furthermore, according to Cell Counting Kit-8 (CCK8) method as well as the Western blot method, the effect of TSA-MN on the biological characteristics of HSF was investigated.@*RESULTS@#With remarkable slow release effect and dermal retention, the release and transdermal properties of TSA-MN in vitro were better than both TSA and ordinary dosage forms. Its effect of HSF confirmed the essential decrease in cell motility during cell proliferation and cell migration in vitro, which plays a significant role in down-regulating the secretion of transforming growth factor-β1 (TGF-β1) in HSF and increasing the expression level of Smad7.@*CONCLUSION@#The prepared TSA self-soluble microneedles is helpful in solving the problem of hypertrophic scars, with a stable dermal retention effect after process optimization.

8.
Journal of Zhejiang University. Science. B ; (12): 723-733, 2023.
Article in English | WPRIM | ID: wpr-982406

ABSTRACT

Ivermectin is a US Food and Drug Administration (FDA)-approved antiparasitic agent with antiviral and anti-inflammatory properties. Although recent studies reported the possible anti-inflammatory activity of ivermectin in respiratory injuries, its potential therapeutic effect on pulmonary fibrosis (PF) has not been investigated. This study aimed to explore the ability of ivermectin (0.6 mg/kg) to alleviate bleomycin-induced biochemical derangements and histological changes in an experimental PF rat model. This can provide the means to validate the clinical utility of ivermectin as a treatment option for idiopathic PF. The results showed that ivermectin mitigated the bleomycin-evoked pulmonary injury, as manifested by the reduced infiltration of inflammatory cells, as well as decreased the inflammation and fibrosis scores. Intriguingly, ivermectin decreased collagen fiber deposition and suppressed transforming growth factor-‍β1 (TGF-‍β1) and fibronectin protein expression, highlighting its anti-fibrotic activity. This study revealed for the first time that ivermectin can suppress the nucleotide-binding oligomerization domain (NOD)‍-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome, as manifested by the reduced gene expression of NLRP3 and the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), with a subsequent decline in the interleukin‍-‍1β (IL‍-‍1β) level. In addition, ivermectin inhibited the expression of intracellular nuclear factor-‍κB (NF‍-‍κB) and hypoxia‑inducible factor‑1α (HIF‍-‍1α) proteins along with lowering the oxidative stress and apoptotic markers. Altogether, this study revealed that ivermectin could ameliorate pulmonary inflammation and fibrosis induced by bleomycin. These beneficial effects were mediated, at least partly, via the downregulation of TGF-‍β1 and fibronectin, as well as the suppression of NLRP3 inflammasome through modulating the expression of HIF‑1α and NF-‍κB.


Subject(s)
Animals , Rats , Anti-Inflammatory Agents , Bleomycin/toxicity , Fibronectins/metabolism , Fibrosis , Inflammasomes/metabolism , Ivermectin/adverse effects , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pulmonary Fibrosis/drug therapy
9.
Chinese Pharmacological Bulletin ; (12): 1438-1443, 2023.
Article in Chinese | WPRIM | ID: wpr-1013954

ABSTRACT

Aim To observe the effect of betulinic acid (BA) on the migration and invasion of human gastric cancer MKN-45 cells induced by transforming growth factor-pi (TGF-β1), and to explore the effect of BA on epithelial-mesenchymal transition (EMT) and the potential mechanism. Methods The MKN-45 cells were cultivated in vitro, and the effects of different concentrations of BA on the proliferation of MKN-45 cells at 24, 48 and 72 h were detected using CCK-8 method. The effects of BA (5, 10, 20 jjunol • L) and TGF-01 inhibitor LY2109761 (10

10.
Chinese Pharmacological Bulletin ; (12): 229-238, 2023.
Article in Chinese | WPRIM | ID: wpr-1013848

ABSTRACT

Aim To explore the effect of ZLY18 on angiotensin II-induced cardiac fibrosis and the underlying mechanism. Methods Ang II was used to induce cardiac fibrosis in vitro and in vivo. Cardiac fibroblasts were divided into blank control group, model group and medicine group. The medicine group was subdivided into ZLY18(L)group, ZLY18(M)group and ZLY18(H)group. Compound ZLY18 was given 1, 2, 5 μmol·L-1 respectively. C57BL/6 mice were randomly divided into control group, model group and medicine group. The medicine group were subdivided into ZLY18(L)group, ZLY18(M)group and ZLY18(H)group. Compound ZLY18 was given 10,20 and 50 mg·kg-1 respectively. Both the model group and the medicine group were given with Ang II to induce cardiac fibrosis. The changes of protein levels were detected by Western blot and immunofluorescence. The changes of cardiac function indexes in C57BL/6 mice were detected by small animal echocardiography. The morphology, cell arrangement and collagen fibers of cardiac fibroblasts were observed by tissue section staining and other methods. Results The model of Ang II-induced myocardial fibrosis was successfully established at the cell and animal levels, and ZLY18 treatment improved the elevated fibrosis-related protein caused by Ang II and abnormal cardiac function in mice. Moreover, ZLY18 was able to inhibit the increased phosphorylation of TGF-1 and Smad3 caused by Ang II and increased Smad2/3 nuclear entry, suggesting that the antifibrotic effect of ZLY18 might be related to the activation of TGF-1/Smads signaling pathway. Conclusions ZLY18 has a protective effect on Ang II-induced cardiac fibrosis. ZLY18 may inhibit TGF-β/Smads signaling pathway activation to exert anti-fibrotic effects.

11.
Chinese Pharmacological Bulletin ; (12): 1731-1739, 2023.
Article in Chinese | WPRIM | ID: wpr-1013721

ABSTRACT

Aim To investigate the effects of Cichorium glandulosum N-butanol extraction site (C G E) on hepatic fibrosis (H F) in SD rats and to determine the content of the main effective component matricin. Methods HPLC method was used to determine the content of matricin in CGE. The SD rats were randomly divided into control group, model group, CGE low-dose groups, medium-dose and high-dose, and curcumin group. In addition to control group rats' back subcutaneous injection (s c) normal saline, rats in the other groups were treated with body weight sc 40 % CC1

12.
Neuroscience Bulletin ; (6): 1363-1374, 2023.
Article in English | WPRIM | ID: wpr-1010626

ABSTRACT

Although sympathetic blockade is clinically used to treat pain, the underlying mechanisms remain unclear. We developed a localized microsympathectomy (mSYMPX), by cutting the grey rami entering the spinal nerves near the rodent lumbar dorsal root ganglia (DRG). In a chemotherapy-induced peripheral neuropathy model, mSYMPX attenuated pain behaviors via DRG macrophages and the anti-inflammatory actions of transforming growth factor-β (TGF-β) and its receptor TGF-βR1. Here, we examined the role of TGF-β in sympathetic-mediated radiculopathy produced by local inflammation of the DRG (LID). Mice showed mechanical hypersensitivity and transcriptional and protein upregulation of TGF-β1 and TGF-βR1 three days after LID. Microsympathectomy prevented mechanical hypersensitivity and further upregulated Tgfb1 and Tgfbr1. Intrathecal delivery of TGF-β1 rapidly relieved the LID-induced mechanical hypersensitivity, and TGF-βR1 antagonists rapidly unmasked the mechanical hypersensitivity after LID+mSYMPX. In situ hybridization showed that Tgfb1 was largely expressed in DRG macrophages, and Tgfbr1 in neurons. We suggest that TGF-β signaling is a general underlying mechanism of local sympathetic blockade.


Subject(s)
Mice , Animals , Receptor, Transforming Growth Factor-beta Type I/metabolism , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta1/metabolism , Hyperalgesia/metabolism , Radiculopathy/metabolism , Pain/metabolism , Analgesics/pharmacology , Ganglia, Spinal/metabolism
13.
Journal of Zhejiang University. Science. B ; (12): 682-697, 2023.
Article in English | WPRIM | ID: wpr-1010563

ABSTRACT

Cardiac fibrosis is a cause of morbidity and mortality in people with heart disease. Anti-fibrosis treatment is a significant therapy for heart disease, but there is still no thorough understanding of fibrotic mechanisms. This study was carried out to ascertain the functions of cytokine receptor-like factor 1 (CRLF1) in cardiac fibrosis and clarify its regulatory mechanisms. We found that CRLF1 was expressed predominantly in cardiac fibroblasts. Its expression was up-regulated not only in a mouse heart fibrotic model induced by myocardial infarction, but also in mouse and human cardiac fibroblasts provoked by transforming growth factor-‍β1 (TGF‍-‍β1). Gain- and loss-of-function experiments of CRLF1 were carried out in neonatal mice cardiac fibroblasts (NMCFs) with or without TGF-‍β1 stimulation. CRLF1 overexpression increased cell viability, collagen production, cell proliferation capacity, and myofibroblast transformation of NMCFs with or without TGF‍-‍β1 stimulation, while silencing of CRLF1 had the opposite effects. An inhibitor of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway and different inhibitors of TGF-‍β1 signaling cascades, comprising mothers against decapentaplegic homolog (SMAD)‍-dependent and SMAD-independent pathways, were applied to investigate the mechanisms involved. CRLF1 exerted its functions by activating the ERK1/2 signaling pathway. Furthermore, the SMAD-dependent pathway, not the SMAD-independent pathway, was responsible for CRLF1 up-regulation in NMCFs treated with TGF-‍β1. In summary, activation of the TGF-‍β1/SMAD signaling pathway in cardiac fibrosis increased CRLF1 expression. CRLF1 then aggravated cardiac fibrosis by activating the ERK1/2 signaling pathway. CRLF1 could become a novel potential target for intervention and remedy of cardiac fibrosis.


Subject(s)
Animals , Humans , Mice , Disease Models, Animal , Fibroblasts/metabolism , Fibrosis , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 3/metabolism , Myocardial Infarction/metabolism , Receptors, Cytokine/metabolism , Signal Transduction , Transforming Growth Factor beta1/pharmacology
14.
Journal of Environmental and Occupational Medicine ; (12): 196-201, 2023.
Article in Chinese | WPRIM | ID: wpr-964933

ABSTRACT

Background Lead is widely distributed. Lead exposure interferes with early life development in zebrafish, but the mechanisms by which lead exposure affects skeletal development and cardiac development are not clear as yet. Objective To investigate the molecular mechanisms of bone development and cardiac development toxicity induced by lead acetate exposure. Methods Zebrafish embryos were exposed to different concentrations of lead acetate (0, 6, 12, 24, and 48 μmol·L−1) for 3 h post-fertilization (3 hpf) until 5 d post-fertilization (5 dpf). The malformation phenotypes of 5 dpf were counted, and the mRNA expressions of spinal development-related genes (bmp2b, bmp4, bmp9, runx2a, runx2b) and heart development-related genes (nkx2.5, myh6, myh7) were detected by quantitative PCR (qPCR). Expressions of genes of development-related regulatory pathways including Wnt/β-catenin pathway (wnt5a, wnt8a, wnt10a, β-catenin) and TGF-β pathway (tgf-β1, tgf-β2) as well as key molecule eph of Eph-Ephrin signaling were analyzed. Results At 5 dpf, the zebrafish in the lead acetate treated groups showed deformed phenotypes including spinal curvature and pericardial sac edema compared to the control group. In the lead acetate groups at 24 and 48 μmol·L−1, the spinal curvature deformity rates reached 26.47% and 71.52% (P<0.01) respectively. The qPCR results revealed that the expression levels of spinal development-related genes bmp2b, bmp4, bmp9, runx2a, and runx2b were downregulated in the 48 μmol·L−1 exposure group compared to the control group by 82.8%, 58.0%, 88.7%, 85.5%, and 69.2%, respectively (P<0.05 or P<0.01); the expression levels of heart development-related genes myh6, myh7, and nkx2.5 were down-regulated by 63.7%, 58.9%, and 55.2%, respectively (P<0.01); the expression levels of wnt8a and β-catenin in the Wnt/β-catenin pathway were down-regulated by 71.5% and 47.3% (P < 0.05 or P < 0.01), respectively; the expression level of tgf- β1 in the TGF-β pathway was down-regulated by 67.5% (P<0.01); the expression level of eph was down-regulated by 86.9% (P<0.01). Conclusion Lead acetate exerts developmental toxic effects on zebrafish heart and bone by down-regulating the expressions of genes related to spinal development and heart development, as well as inhibiting development-related Wnt/β-catenin and TGF-β pathways and Eph-Ephrin signaling, causing malformed phenotypes such as spinal curvature and pericardial sac edema.

15.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 252-261, 2023.
Article in Chinese | WPRIM | ID: wpr-962649

ABSTRACT

Liver fibrosis is a wound healing response that occurs in the setting of chronic liver injury and is caused by imbalance in the synthesis and degradation of extracellular matrix (ECM). If left untreated, it can progress to liver cirrhosis and hepatocellular carcinoma. The activation of hepatic stellate cell (HSC) is now well established as a central driver of liver fibrosis. The activated HSC will transform into myofibroblasts that produce ECM protein. Transforming growth factor-β1 (TGF-β1) can induce the activation of hepatic stellate cell (HSC), and TGF-β1/Smads signaling pathway is one of the important pathways to promote liver fibrosis. Non-coding RNA (ncRNA) does not encode proteins during the transcription but plays an important regulatory role in the post-transcriptional process of genes. Accumulating evidence shows that the occurrence of liver fibrosis is closely related to the abnormal expression of ncRNA which participates in the activation of HSC by regulating TGF-β1 signal transduction and then affects the process of liver fibrosis. MiRNA-mediated TGF-β1/Smads signaling pathway can not only promote liver fibrosis but also play a role in anti-fibrosis. Long non-coding RNA (lncRNA) not only promotes the development of liver fibrosis by binding to target genes but also enhances TGF-β1 signal transduction by acting as competitive endogenous RNA. circular RNA (circRNA) acts as a ''sponge'' to regulate TGF-β1/Smads pathway, thereby inhibiting HSC activation and exerting the anti-liver fibrosis effect. Chinese medicinal plays an essential part in the prevention and treatment of liver fibrosis, and the active components can inhibit TGF-β1/Smads pathway by regulating the expression of miRNA, thus alleviating liver fibrosis. This article reviews the role and mechanism of miRNA-, lncRNA- and circRNA-mediated TGF-β1/Smads signaling pathway in liver fibrosis and summarizes the anti-liver fibrosis effect of active components of Chinese medicinals by regulating miRNA-mediated TGF-β1/Smads signaling pathway, which can serve as a reference for clinical treatment of liver fibrosis and the development of new drugs.

16.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 66-75, 2023.
Article in Chinese | WPRIM | ID: wpr-962626

ABSTRACT

ObjectiveTo explore the mechanism of Qigesan (QGS) in intervening in the migration and invasion of esophageal carcinoma TE-1 cells. MethodMicroarray technology was used to screen differentially expressed genes (DEGs) in the normal group and the QGS group, and the ontological functions and signaling pathways of DEGs were analyzed. The thiazolyl tetrazolium (MTT) assay was used to detect the effect of QGS on the viability of TE-1 cells. In the subsequent experiments for verification, a blank group, a transforming growth factor-β1 (TGF-β1) group, a TGF-β1 + QGS group, and a TGF-β1 + SB431542 group were set up. The cell morphology in each experimental group was observed by microscopy. The migration and invasion abilities of cells were detected by wound healing assay, and the mRNA expression levels of E-Cadherin, vimentin, Smad2, and Smad7 were detected by Real-time quantitative polymerase chain reaction (Real-time PCR). The protein expression of E-Cadherin, vimentin, p-Smad2/3, Smad2/3, and Smad7 was detected by Western blot. ResultThere were 1 487 DEGs between the QGS group and the blank group, including 1 080 down-regulated ones (accounting for 72.63%) and 407 up-regulated ones. The down-regulated genes were mainly involved in biological processes such as cytoskeletal protein binding, ATP binding, adenylate nucleotide binding, and adenylate ribonucleotide binding, and the involved Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways included TGF-β signaling pathway, cell cycle, extracellular matrix-receptor interaction protein, tumor pathways, and oocyte meiosis. The up-regulated genes were mainly involved in RNA binding, DNA binding, transcriptional regulator activity, transcriptional activator activity, and nucleotide binding, and the KEGG pathways involved mainly included mitogen-activated protein kinase (MAPK) signaling pathway, bladder cancer, renal cell carcinoma, cancer pathways, and p53 signaling pathway. Compared with the blank group, the inhibition rate of cell viability of TE-1 cells increased after QGS (20, 30, 40, 60, 80 mg·L-1) intervention for 12, 24, 36, 48, 60 h (P<0.05), and the inhibition rate was time- and dose-dependent. Compared with the blank group, the TGF-β1 group showed lengthened cells with fibroblast phenotype. Compared with the TGF-β1 group, the TGF-β1 + QGS group showed shortened cells with normal morphology and epithelial phenotype. The cell morphology in the TGF-β1 + SB431542 group was similar to that of the TGF-β1 + QGS group. Compared with the blank group, the TGF-β1 group showed potentiated ability of cell migration and invasion (P<0.05). Compared with the TGF-β1 group, the TGF-β1 + QGS group and the TGF-β1 + SB431542 group showed inhibited and weakened migration and invasion abilities of cells (P<0.05). However, there was no significant difference in migration and invasion abilities between the TGF-β1 + QGS group and the TGF-β1 + SB431542 group. The mRNA expression levels of vimentin and Smad2 in the TGF-β1 group were higher (P<0.05), and the mRNA expression levels of E-Cadherin and Smad7 were lower (P<0.05) than those in the blank group. Compared with the TGF-β1 group, the TGF-β1 + QGS group and the TGF-β1+ SB431542 group exhibited decreased expression levels of vimentin and Smad2 mRNA (P<0.05), and elevated expression levels of E-Cadherin and Smad7 mRNA (P<0.05). Compared with the blank group, the TGF-β1 group showed up-regulated protein expression levels of vimentin, p-Smad2/3, and Smad2/3 (P<0.05), and reduced protein expression levels of E-Cadherin and Smad7 (P<0.05). Compared with the TGF-β1 group, the TGF-β1 + QGS group and the TGF-β1 + SB431542 group displayed decreased protein expression levels of vimentin, p-Smad2/3, and Smad2/3 (P<0.05), and increased protein expression levels of E-Cadherin and Smad7 (P<0.05). ConclusionThe ethyl acetate extract of QGS inhibits the epithelial-mesenchymal transition (EMT) of TE-1 cells through the TGF-β1 pathway to reduce the migration and invasion of TE-1 cells.

17.
International Eye Science ; (12): 1072-1079, 2023.
Article in Chinese | WPRIM | ID: wpr-976473

ABSTRACT

AIM: To investigate the mechanism of pyrrolidine dithiocarbamate(PDTC)on transforming growth factor-beta 2(TGF-β2)-induced epithelial-mesenchymal transition(EMT)in human lens epithelial cells(LECs).METHODS: LECs were treated with various doses of PDTC chemicals following TGF-β2 caused EMT on these cells. Cell proliferation and lateral migration were discovered using the CCK-8 and cell scratch test. The markers of EMT, including E-cadherin, α-SMA and nuclear factor-κB(NF-κB)signaling pathway-related expression, were tested by Western Blot as well as the changes in the expression of the apoptosis-related proteins BAX, BCL-2, Caspase-3, and Cyclin D1.RESULTS: The proliferation and migration viability of cells in the TGF-β2 treated group was increased compared to the group without TGF-β2, and the expression of α-SMA increased whereas the E-cadherin expression decreased. With the effect of TGF-β2, NF-κB p65 and phosphorylated NF-κB p65 expression increased, the concentration of TGF-β2 that had the greatest capacity for proliferation and migration was 10 ng/mL(P&#x003C;0.05). Mechanism study of PDTC-induced EMT reversal and apoptosis showed that cell viability and migratory capability were both significantly reduced after PDTC intervention; PDTC prevents IκB phosphorylation, thus inhibiting NF-κB nuclear translocation. Protein associated to the NF-κB signaling pathway, and protein expression of NF-κB/IκBα/p-IκBα/Iκκ-α/p-Iκκ-α was decreased(P&#x003C;0.05), PDTC increased the expression of the pro-apoptotic protein BAX/Caspase-3, expression of the inhibitor of apoptosis protein BCL-2 and the cell cycle protein Cyclin D1 was reduced. The expression of NF-κB/IκB mRNA was reduced, expression of the apoptosis-related mRNA BAX increased, while BCL-2 reduced.CONCLUSION: The EMT in LECs cells induced by TGF-β2 can be significantly reversed by PDTC, which may be related to the decreased expression of NF-κB p65/IκB/Iκκ-α and activation of apoptosis-related protein. PDTC can reverse EMT by inhibiting NF-κB signaling pathway and induce apoptosis of abnormally proliferated cells, which will provide new potential therapeutic agents for posterior capsular opacification(PCO)treatment.

18.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 21-29, 2023.
Article in Chinese | WPRIM | ID: wpr-975152

ABSTRACT

ObjectiveTraditional Chinese medicine, namely Dahuang Zhechongwan (DHZCW) was used to treat myocardial fibrosis in model rats, observe its effect on myocardial fibrosis in rats, and explore its action mechanism. MethodThirty-six SPF male Kunming rats were divided into blank group, model group, low-, medium-, high-dose groups of DHZCW (0.056, 0.084, 0.168 g·kg-1), captopril group (10 mg·kg-1), with six rats in each group. Except for the blank group, the other groups were intraperitoneally injected isoproterenol solution of 5 mg·kg-1 for 15 consecutive days to replicate the myocardial fibrosis model. At the beginning of modeling, the rats in each group took drugs, and they were sacrificed 28 days after administration. Serum and heart tissue were collected for the corresponding detection. Hematoxylin-eosin (HE) staining and Masson staining were used to observe tissue inflammation, cellular degeneration, necrosis, and fibrosis. The contents of hydroxyproline (HYP), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), hyaluronic acid (HA), laminin (LN), type-Ⅲ procollagen (PC Ⅲ) in serum of rats and rats were determined by enzyme-related immunosorbent assay (ELISA). The expression levels of key pathway proteins transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (α-SMA), Smad2, Smad3, and Smad7 were detected by Western blot. The expression levels of key pathway genes TGF-β1, α-SMA, Smad2, Smad3, Smad7, miR-29a-5p, miR-29b-2-5p, and miR-29c-5p were detected by Real-time quantitative polymerase chain reaction (Real-time PCR). ResultCompared with the blank group, the pathological changes of fibrosis in the model group were obvious, the contents of serum HYP, TNF-α, IL-1β, IL-6, HA, LN, and PCⅢ were increased (P<0.01), the protein expression levels of TGF-β1, α-SMA, Smad2, and Smad3 were increased; the protein expression level of Smad7 was decreased (P<0.01). The mRNA expression levels of TGF-β1, α-SMA, Smad2, and Smad3 were increased (P<0.05, P<0.01), while those of Smad7, miR-29a-5p, miR-29b-2-5p, and miR-29c-5p were decreased (P<0.01). Compared with the model group, after 28 days of administration, serum HYP, TNF-α, IL-1β, IL-6, HA, LN, and PCⅢ in high-, medium-, and low-dose groups of DHZCW and captopril groups were decreased (P<0.01). Except for the low-dose group, the protein contents of TGF-β1, α-SMA, Smad2, and Smad3 were decreased, while the protein content of Smad7 was increased (P<0.01). The mRNA expression levels of TGF-β1, Smad2, α-SMA, and Smad3 in high-dose group of DHZCW were decreased (P<0.05,P<0.01), while those of Smad7, miR-29a-5p, miR-29b-2-5p, and miR-29c-5p were increased (P<0.05). The mRNA expressions of TGF-β1, Smad2, and Smad3 in the medium-dose group of DHZCW were decreased (P<0.05, P<0.01), while mRNA expression of Smad7 was increased (P<0.01). The mRNA levels of TGF-β1 and Smad2 in the low-dose group of DHZCW were decreased (P<0.01). ConclusionDHZCW can improve myocardial fibrosis in rats, and its action mechanism may be related to the regulation of the TGF-β1/Smads/miR-29 pathway. In addition, there is dose dependence in the range of 0.056-0.168 g·kg-1, and the effect of the high-dose group is more stable.

19.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 534-540, 2023.
Article in Chinese | WPRIM | ID: wpr-973253

ABSTRACT

Diabetic kidney disease (DKD) is one of the most common microvascular complications in patients with diabetes. DKD is also the main cause of end-stage renal failure, with very complex pathogenesis. A large number of experiments have confirmed that epigenetic mechanisms, including histone chemical modifications and lipid metabolites 12/15-lipoxygenase (12/15-LO), are involved in regulating the characteristic pathophysiological process of DKD, based on which, this review further explores the pathogenesis of DKD and provides the new research direction for DKD treatment.

20.
Chinese Acupuncture & Moxibustion ; (12): 684-690, 2023.
Article in Chinese | WPRIM | ID: wpr-980779

ABSTRACT

OBJECTIVE@#To observe the effect of acupuncture at "Feishu" (BL 13) + "Dingchuan" (EX-B 1) and "Kongzui" (LU 6) + "Yuji" (LU 10) for the airway remodeling in asthma rats based on the transforming growth factor-β1 (TGF-β1)/ Smad family member 3 (Smad3) signaling pathway; and explore the efficacy difference between the two acupoint combinations.@*METHODS@#Forty SPF male SD rats, aged 4 weeks, were randomly divided into a blank group (n = 10) and a modeling group (n = 30). The ovalbumin (OVA) sensitization method was used to establish asthma model in the modeling group. After successful model preparation, the rats of the modeling group were randomized into a model group, an acupuncture at "Feishu" (BL 13) + "Dingchuan" (EX-B 1) (AAF) group, and acupuncture at "Kongzui" (LU 6)+"Yuji" (LU 10) (AAK) group, with 10 rats in each one. Starting from day 15 of the experiment, 5 min after motivating, acupuncture was applied to "Feishu" (BL 13) + "Dingchuan" (EX-B 1) and "Kongzui" (LU 6)+"Yuji" (LU 10) in the AAF group and the AAK group respectively. The intervention was delivered for 30 min each time, once daily, lasting 3 weeks consecutively. Using lung function detector, the airway resistance (RL) and dynamic compliance (Cdyn) of the lungs were detected. The histomorphology of lung tissues was detected with HE staining and Masson staining, and the mRNA and protein expression of TGF-β1 and Smad3 in lung tissues was detected with the real-time PCR and Western blot methods.@*RESULTS@#Compared with the blank group, RL was increased and Cdyn was decreased in the rats of the model group (P<0.01); and RL was reduced and Cdyn was increased in the AAF group and the AAK group when compared with those in the model group (P<0.01, P<0.05). The rats of the model group had bronchial lumen stenosis, inflammatory cell infiltration, collagen fibre hyperplasia and thickened smooth muscle in the lung tissues when compared with those in the blank group; and in comparison with the model group, all of the above morphological changes were attenuated in the AAF group and the AAK group. Besides, these morphological changes of the lung tissues were more alleviated in the AAF group when compared with those in the AAK group. In comparison with the blank group, the mRNA and protein expression of TGF-β1 and Smad3 of the lung tissues was increased in the model group (P<0.01), and it was reduced in the AAF group and the AAK group when compared with that in the model group (P<0.05, P<0.01). The mRNA expression of TGF-β1 and Smad3 was lower in the AAF group when compared with that in the AAK group (P<0.05).@*CONCLUSION@#Acupuncture at either "Feishu" (BL 13)+"Dingchuan" (EX-B 1) or "Kongzui" (LU 6)+"Yuji" (LU 10) reduces the airway remodeling in the rats with asthma, which may be related to the down-regulation of mRNA and protein expression of TGF-β1 and Smad3. The better efficacy is obtained with acupuncture at "Feishu" (BL 13)+"Dingchuan" (EX-B 1).


Subject(s)
Male , Animals , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta1/genetics , Airway Remodeling , Acupuncture Therapy , Signal Transduction , Asthma/therapy , Constriction, Pathologic , Anti-Asthmatic Agents
SELECTION OF CITATIONS
SEARCH DETAIL