Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Rev. biol. trop ; 71(1)dic. 2023.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1449501

ABSTRACT

Introducción: No conocemos estudios sobre la microsporogénesis de la planta de cacao, y poco se sabe sobre la ultraestructura de sus granos de polen. Objetivo: Describir la microsporogénesis y ultraestructura de los granos de polen en T. cacao. Métodos: Procesamos más de 30 flores para cada etapa floral, teñidas con Safranina-Azul Alcian, PAS-Amidoblack y Lacmoid. Para la microscopía de transmisión procesamos las muestras en resina y las teñimos con azul de toluidina. Para microscopía electrónica de barrido, fijamos y deshidratamos en 2.2-dimetoxipropano, secamos hasta un punto crítico y recubrimos con oro. Resultados: Anteras diferenciadas por una masa celular en los extremos distales a los filamentos estaminales. Durante el desarrollo la pared de las anteras presenta varios estratos celulares y al madurar se reducen a la epidermis y al endotecio. Las células madre de microsporas se dividen por meiosis para formar tétradas. El tapete es secretor e intacto hasta que se liberan los granos, para luego degenerar. Los granos de polen son isopolares, esferoidales, pequeños, tricolpados. La ultraestructura presenta una esporodermis semitectada, con ornamentación reticulada, y un retículo heterobrochado con el muri sin ornamentación. La exina se deposita antes que la intina. Los orbículos son individuales, lisos y de tamaño variado. Hay abundante polenkit en el tectum y entre las columelas. La intina es delgada, pero se desarrolla ampliamente en las áreas del colpo, formando una intina interna compacta y una intina externa inusual con una apariencia columelada. Conclusión: La estructura y el desarrollo de las anteras siguen el patrón de las angiospermas. La microsporogénesis simultánea y la deposición centrípeta de la esporodermis se conocen de Malvaceae, pero los caracteres de la intina son nuevos para la familia.


Introduction: We know of no studies on the microsporogenesis of the cocoa plant, and little is known about the ultrastructure of its pollen grains. Objective: To describe microsporogenesis and ultrastructure of pollen grains in T. cacao. Methods: We processed over 30 flowers for each floral stage and stained with Safranin-Alcian Blue, PAS-Amidoblack and Lacmoid. For transmission microscopy we processed samples on resin and stained with toluidine blue. For scanning electron microscopy, we fixed and dehydrated in 2.2-dimethoxypropane, critically dried and coated with gold. Results: Anthers differentiated by a cellular mass at the ends distal to the staminal filaments. During development, the anther wall has several cellular layers reduced, at maturity, to the epidermis and endothecium. Microspore mother cells divide by meiosis to form tetrads. The tapetum is secretory and intact until the grains are released, to later degenerate. Pollen grains are isopolar, spheroidal, small, tricolpate. Ultrastructure has a semi-tectate sporodermis, with reticulate ornamentation, and heterobrochated reticulum with the muri without ornamentation. Exine is deposited before intine. The orbicles are individual, smooth, and varied in size. There is abundant pollenkitt on the tectum and between the columellae. The intine is thin, but develops widely in the colpus areas, forming a compact internal intine and an unusual external intine with a columellated appearance. Conclusion: Anther structure and development follows the angiosperm pattern. Simultaneous microsporogenesis and centripetal deposition of the sporodermis are known from Malvaceae, but intine characters are novel for the family.

2.
Rev. biol. trop ; 69(3)sept. 2021.
Article in Spanish | LILACS, SaludCR | ID: biblio-1387673

ABSTRACT

Resumen Introducción: Los estudios sobre microsporogénesis, micromorfología y estructura de los granos de polen en Malvaceae son escasos. Objetivos: Describir el proceso de microsporogénesis y aspectos micromorfológicos de los granos de polen en A. rosea. Métodos: Se procesaron más de 30 andróforos de acuerdo con los protocolos estándar para incrustar y seccionar en parafina. Las secciones obtenidas se tiñeron con Azul de Safranina-Alcian, las anteras inmaduras y no fijadas se tiñeron con Azul de anilina. Se procesaron secciones de resina adicionales de los andróforos y se tiñeron con azul de toluidina. Se observaron secciones ultrafinas con microscopía electrónica de transmisión (MET). Para la observación con microscopía electrónica de barrido (MEB), el material se fijó y deshidrató en 2,2 dimetoxipropano, luego se secó hasta un punto crítico y se recubrieron con oro. Resultados: las anteras se diferencian de una masa celular en los extremos distales de los filamentos del estambre. La pared de la antera madura presenta una capa externa de células epidérmicas y una capa interna, el endotecio. Las células madre de microesporas se dividen por mitosis y luego experimentan meiosis para formar tétradas. El tapete es inicialmente celular y forma una sola capa de células y luego pierde integridad celular al invadir el lóculo de microsporangio, formando un periplasmodio. Durante la formación de la esporodermis, primero se deposita la exina y luego la intina. Para el momento de la liberación de los granos de polen, el tapete se ha degenerado por completo. Los granos de polen son pantoporados, apolares, con simetría radial, esferoidales, con espinas, báculas, gránulos y microgránulos. El téctum está perforado con fovéoleas dispuestas homogéneamente en toda la superficie y con polenkit. La exina es ancha (5-6 µm) y consta de una endexina gruesa de 3.5 a 4 µm y una ektexina fina (0.6-0.7 µm). La ultraestructura muestra columelas claramente definidas formando el infratéctum. Se aprecian tricomas nectaríferos unicelulares glandulares capitados (TG) cubriendo toda la superficie de los filamentos de los estambres. Conclusiones: La estructura y desarrollo de las anteras sigue los patrones conocidos de las angiospermas. La microsporogénesis simultánea y el depósito centrípeto de la esporodermis se han descrito previamente para Malvaceae.


Abstract Introduction: Studies on microsporogenesis, micromorphology and structure of pollen grains in Malvaceae are scarce. Objectives: To describe the process of microsporogenesis and micromorphological aspects of pollen grains in A. rosea. Methods: Androphores were processed according to standard protocols for sectioning in paraffin. The obtained sections were stained with Safranin-Alcian blue, Aniline blue was used for immature and unfixed anthers and for resin sections of the androphores, Toluidine blue. Ultrathin sections were observed with transmission electron microscopy. For observation with scanning electron microscopy the material was fixed and dehydrated in 2.2 dimethoxypropane, dried to a critical point and coated with gold. Results: Anthers differentiate from a cell mass at the distal ends of the stamen filaments. The wall of the mature anther presents an outer layer of epidermal cells and an inner layer, the endothecium. Microspore mother cells divide by mitosis and then undergo meiosis to form tetrads. The tapetum is initially cellular and forms a single layer of cells and then loses cellular integrity by invading the microsporangium locule, forming a periplasmodia, by the time the pollen grains are released it degenerated. During sporodermis formation, exine is first deposited and then intine. Pollen grains are pantoporate, apolar, with radial symmetry, spheroidal, with spines, bacula, granules and microgranules. Tectum is perforated with foveolae arranged homogeneously over the whole surface and pollenkit is present. Exine is broad and consists of a thick 3.5 to 4 µm endexine and a thin ektexine (0.6-0.7 µm). The ultrastructure shows columellae forming the infratectum. Capitate glandular unicellular nectariferous trichomes covers the whole surface of the stamen filaments. Conclusions: The structure and development of the anthers follows the known patterns for angiosperms. Simultaneous microsporogenesis and centripetal deposit of the sporodermis have been previously described for Malvaceae.


Subject(s)
Pollen , Malvaceae/anatomy & histology , Gametogenesis, Plant
3.
Chinese Journal of Biotechnology ; (12): 2277-2286, 2020.
Article in Chinese | WPRIM | ID: wpr-878485

ABSTRACT

MYB transcription factor is one of the largest transcription families and involved in plant growth and development, stress response, product metabolism and other processes. It regulates the development of plant flowers, especially anther development, a key role in the reproduction of plant progeny. Here, we discuss the regulatory effects of MYB transcription factors on the development of anther, including tapetum development, anther dehiscence, pollen development, carbohydrates and hormone pathways. We provide a reference for the further study of the regulation mechanism and network of plant anther development.


Subject(s)
Humans , Arabidopsis/metabolism , Flowers/genetics , Gene Expression Regulation, Plant , Pollen/genetics , Reproduction , Transcription Factors/metabolism
4.
Rev. biol. trop ; 64(1): 341-352, ene.-mar. 2016. tab, ilus
Article in Spanish | LILACS | ID: biblio-843282

ABSTRACT

ResumenPeristethium leptostachyum es una especie hemiparásita de la familia Loranthaceae, distribuida en Colombia, Costa Rica, Ecuador, Perú, Venezuela y Panamá. Previamente tratada como Struthanthus leptostachyus, la especie fuerecientemente fue reubicada en Peristethium junto con otras que previamente estaban en los géneros Cladocolea y Struthanthus. La decisión de reconocer a Peristethium como género es controversial y fue tomada con base en caracteres de la inflorescencia y de la flor; en tanto que la monofilia de los tres géneros nombrados es incierta. En esta investigación se estudió la morfoanatomía de flores e inflorescencias de Peristethium leptostachyum, detallando la estructura del androceo y gineceo, así como los procesos de microgametogénesis y megagametogénesis; adicionalmente se realizaron comparaciones con especies afines y precisiones en relación con las diagnosis previas. Se recolectaron flores en diversas fases de desarrollo en Santa María (Boyacá-Colombia), se prepararon y analizaron bajo microscopio secciones histológicas teñidas con astrabluefucsina, además de disecciones bajo estereomicroscopio. Los resultados mostraron que P. leptostachyum comparte caracteres inflorenciales con Cladocolea (inflorescencia determinada, flor terminal ebracteada), pero también con Struthanthus (pares de tríadas a lo largo del eje, brácteas caducas y flores actinomorfas). Las flores de P. Leptostachyum de Santa María son claramente hermafroditas, con androceos y gineceos totalmente desarrollados; lo cual contradice la descripción hecha por Kuijt que reporta una condición dioica para esta especie. El androceo resultó afín al de Struthanthus vulgaris, con tapetum glandular y microsporogénesis simultánea; en contraste, Cladocolea loniceroides presenta tapetum periplasmodial y microesporogénesis sucesiva. El gineceo de P. leptostachyum, al igual que en Cladocolea, Struthanthus y Phthirusa, es unilocular con mamelón y tejido arquesporial orientado hacia el estilo, el cual es sólido y con tejido amilífero. P. leptostachyum es afín a Cladocolea loniceroides y difiere de Struthanthus vulgaris por presentar varios sacos embrionarios y pelvis (hipostasa) no lignificada. La presencia de un canal estilar sólido se propone como sinapomorfía de la tribu Psittacanthinae. Dado que P. Leptostachyum comparte caracteres anatómicos florales tanto con Cladocolea como con Strutanthus, la relación entre estos tres géneros no queda resuelta, se requieren estudios filogenéticos para establecer esta relación y poner a prueba las hipótesis de monofilia de cada uno de ellos.


AbstractPeristethium leptostachyum is a hemiparasite species of the family Loranthaceae, distributed in Colombia, Costa Rica, Ecuador, Peru, Venezuela and Panama. Previously treated as Struthanthus leptostachyus, the species was recently transferred to Peristethium together with other species of Cladocolea and Struthanthus. The present research describes the inflorescence and floral morphoanatomy of Peristethium leptostachyum, detailing the structure of the androecium and gynoecium and the processes of microgametogenesis and megagametogenesis, thus allowing comparison with Struthanthus and Cladocolea. Flowering material was collected in February and August 2012, in Santa María, Boyacá, Colombia. Histological sections were prepared and stained with astrablue-fuchsin and floral dissections were performed under a stereomicroscope. Peristethium leptostachyum shares inflorescence characters with Cladocolea (determinate inflorescence, ebracteate terminal flower), but also with Struthanthus (pairs of triads along the axis, deciduous bracts and actinomorphic flowers). The flowers of P. leptostachyum from Santa María are clearly hermaphrodites with androecium and gynoecium fully developed. This observation contradicts the description by Kuijt who reported this species to be dioecious. The androecium was observed to be similar to that of Struthanthus vulgaris, with a glandular tapetum and simultaneous microsporogenesis; in contrast, Cladocolea loniceroides has a periplasmodial tapetum and successive microsporogenesis. The gynoecium of P. leptostachyum, like that of Cladocolea, Struthanthus and Phthirusa, has a unilocular ovary with a mamelon and arquesporial tissue isoriented towards the style, which in turn is solid and amyliferous. Peristethium leptostachyum is similar to Cladocolea loniceroides and differs from Strutanthus vulgaris in presenting multiple embryo sacs and an unlignified pelvis (hipostase). The presence of a solid stylar canal is proposed as a synapomorphy of the tribe Psittacanthinae. Given that P. leptostachyum shares characters with both Cladocolea and Struthanthus generic placement cannot be clearly determined on the basis of anatomical evidence. Phylogenetic studies that include representative species of all three genera are desirable to test hypotheses of monophyly. The sexual system observed here in P. leptostachyum is different from that reported by Kuijt and more studies are needed to identify the factors (geographic, ecological, etc.) that influence this variation. Rev. Biol. Trop. 64 (1): 341-352. Epub 2016 March 01.


Subject(s)
Loranthaceae/anatomy & histology , Loranthaceae/classification , Flowers/anatomy & histology , Flowers/classification , Loranthaceae/physiology , Flowers/physiology , Inflorescence
5.
Rev. biol. trop ; 62(3): 1147-1159, jul.-sep. 2014. ilus
Article in Spanish | LILACS | ID: lil-753680

ABSTRACT

Winteraceae has long been considered a family with early diversification among angiosperms, with characters such as: flowers with many spirally arranged parts and apocarpic ovary formed by plicated carpels with sessile stigma. In Drimys, the presence or absence of conspicuous glands on the connective of the stamens have been used as a taxonomic character, and it is considered a synapomorphy for the clade including Drimys angustifolia, D. brasiliensis, D. granadensis and D. roraimensis (Northeastern clade); however, the anatomy of stamens and carpels has only been studied in detail for D. winteri (Southwestern clade). In this research, the presence and the structure of glands on the connective of stamens was studied in seven species of the genus from herbarium specimens, and a detailed study of the anatomy and development of stamens and carpels was carried out by scanning electron and optic microscopy in Drimys granadensis. We found similarities between D. granadensis and D. winteri for the following characters: Basic type anther wall formation, secretory tapetum that collapses at maturity, intermediate type microsporogenesis with formation of a transient cell plate in telophase I, ascidiated carpel due to the formation of an adaxial lip during development, stigma closed by interdigitation of epidermal cells. We also determined that the large glands on anther mature connective are originated by an overgrowth of subepidermal oil cells; this character is a Northeastern Drimys clade synapomorphy, while it was absent in both Drimys of Southwestern clade (which includes D. andina, D. confertifolia and D. winteri), and the rest of the Winteraceae. We are proposing the hypothesis that the highly variable enviromental conditions in the tropics where Drimys Northeastern clade is distributed, with a wide range of pollinators, would be associated with the emergence of glandular conspicuously stamens; while, as a prediction to be confirmed, temperated Southwestern clade species, without conspicuous glands, should have a smaller range of visitors and/or pollinators, or even be anemophilous species as Drimys confertifolia. Rev. Biol. Trop. 62 (3): 1147-1159. Epub 2014 September 01.


La familia Winteraceae ha sido tradicionalmente considerada como de diversificación temprana entre las angiospermas por varios caracteres, entre ellos: flores con muchas partes distribuidas en espiral y ovario apocarpico formado por carpelos de tipo plicado con estigma sésil. En el género Drimys, la presencia o ausencia de glándulas conspicuas sobre el conectivo de los estambres ha sido usado como un carácter taxonómico, y su presencia se considera como una sinapomorfía del clado formado por Drimys angustifolia, D. brasiliensis, D. granadensis and D. roraimensis (clado nororiental); sin embargo, la anatomía de estambres o carpelos ha sido solamente estudiada en detalle en D. winteri (clado suroccidental). En esta investigación, la presencia y estructura de las glándulas del conectivo fue estudiada en las siete especies del género Drimys a partir de ejemplares de herbario, además, se realizó un estudio detallado de la anatomía y desarrollo de estambres y carpelos de Drimys granadensis empleando microscopía óptica y microscopía de barrido; y se compararon con los resultados previos en Drimys winteri. Se encontraron similitudes en los siguientes caracteres: formación de la pared de la antera de tipo básico, tapetum secretor que colapsa en la madurez, microsporogénesis de tipo intermedio con formación de una placa celular transitoria en telofase I, carpelo ascidiado debido a la formación de un labio adaxial durante el desarrollo, estigma cerrado por interdigitación de células epidérmicas. Se determinó que las glándulas de gran tamaño sobre el conectivo de la antera madura se originaron por sobrecrecimiento de células oleíferas subepidérmicas, siendo una sinapomorfía del clado nororiental, que esta ausente tanto en el clado suroccidental de Drimys (D. andina, D. confertifolia y D. winteri), como en el resto de la familia. Se propone la hipótesis de que las condiciones altamente variables en las zonas tropicales donde se distribuye el clado nororiental de Drimys, con una amplia gama de polinizadores, estarían asociadas al surgimiento de estambres conspicuamente glandulares; en tanto que proponemos como predicción que las especies circunscritas a la zona templada del Sur de Suramérica (Clado suroccidental), sin glándulas conspicuas, deberían presentar una menor variedad de visitantes y/o polinizadores, o incluso ser especies anemófilas como Drimys confertifolia.


Subject(s)
Drimys , Flowers/anatomy & histology , Flowers/growth & development , Drimys/classification , Drimys/growth & development , Drimys/ultrastructure , Microscopy, Electron, Scanning , Pollination
SELECTION OF CITATIONS
SEARCH DETAIL