Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Indian J Exp Biol ; 2022 Jul; 60(7): 510-513
Article | IMSEAR | ID: sea-222569

ABSTRACT

Brucellosis, a neglected tropical disease of zoonotic nature, is caused by the genus Brucella, specifically by Brucella abortus and B. melitensis in cattle and humans, respectively. Arjunolic acid (AA) is a triterpenoid, isolated from Terminalia arjuna (Roxb.) Wight & Arn., a medicinally important plant used to treat various diseases in the Indian system of medicine. Here, we tried to evaluate AA for its antibacterial activity on Brucella and the in vitro cytotoxicity assay on human lung adenocarcinomic alveolar basal epithelial cell line (A549). Also, we assessed the synergistic effect of arjunolic acid and Tarenna asiatica (L.) Kuntze ex K.Schum. on B. melitensis. AA displayed a considerable antibacterial activity [zone of inhibition (9 mm) with a minimum inhibitory concentration of 30 ?g/mL] against B. melitensis. The rate of cell death for the cancer cells were at 100 ?g/mL concentration of AA was 82% which indicates that AA shows significant membrane disruption to cancer cells. The estimated IC50 of AA against the A549 cell line was 139.90 ?g/mL. The highest synergistic activity was exhibited forming a zone of inhibition measuring 10mm when arjunolic acid and AqE of T. asiatica was added in the concentration of 1:1, respectively.

2.
Asian Pacific Journal of Tropical Biomedicine ; (12): 164-171, 2020.
Article in Chinese | WPRIM | ID: wpr-823928

ABSTRACT

Objective: To enhance the dissolution rate and oral bioavailability of Terminalia arjuna bark extract by formulating its nanosuspension. Methods: Nanoprecipitation approach was used for the formulation of nanosuspension using polysorbate-80 as a stabilizer. The formulated nanosuspension was assessed for particle size, polydispersity index, zeta potential value and for in vitro dissolution study. Oral bioavailability studies were carried out in Wistar male albino rats by administering a single dose (50 mg/kg. b. wt) of the formulated nanosuspension and coarse suspension. The storage stability of the formulated nanosuspension was determined after three months of storage at room temperature and under the refrigerated condition. Mutagenicity assay was carried out to evaluate the toxicity of the formulated nanosuspension using two mutant strains (Salmonella typhimurium TA100 and Salmonella typhimurium TA98).Results: The mean particle size of the formulated nanosuspension was 90.53 nm with polydispersity index and zeta potential values of 0.175 and ?15.7 mV, respectively. Terminalia arjuna nanosuspension showed improved dissolution rate and 1.33-fold higher oral bioavailability than its coarse suspension. The formulated nanosuspension also showed better stability under the refrigerated condition and was non-mutagenic against both strains. Conclusions: Our study demonstrates that nanosuspension technology can effectively enhance the dissolution rate and oral bioavailability of Terminalia arjuna bark extract.

3.
Asian Pacific Journal of Tropical Biomedicine ; (12): 164-171, 2020.
Article in Chinese | WPRIM | ID: wpr-950307

ABSTRACT

Objective: To enhance the dissolution rate and oral bioavailability of Terminalia arjuna bark extract by formulating its nanosuspension. Methods: Nanoprecipitation approach was used for the formulation of nanosuspension using polysorbate-80 as a stabilizer. The formulated nanosuspension was assessed for particle size, polydispersity index, zeta potential value and for in vitro dissolution study. Oral bioavailability studies were carried out in Wistar male albino rats by administering a single dose (50 mg/kg. b. wt) of the formulated nanosuspension and coarse suspension. The storage stability of the formulated nanosuspension was determined after three months of storage at room temperature and under the refrigerated condition. Mutagenicity assay was carried out to evaluate the toxicity of the formulated nanosuspension using two mutant strains (Salmonella typhimurium TA100 and Salmonella typhimurium TA98). Results: The mean particle size of the formulated nanosuspension was 90.53 nm with polydispersity index and zeta potential values of 0.175 and-15.7 mV, respectively. Terminalia arjuna nanosuspension showed improved dissolution rate and 1.33 fold higher oral bioavailability than its coarse suspension. The formulated nanosuspension also showed better stability under the refrigerated condition and was non-mutagenic against both strains. Conclusions: Our study demonstrates that nanosuspension technology can effectively enhance the dissolution rate and oral bioavailability of Terminalia arjuna bark extract. Zafar Fatiqa 1 Department of Chemistry, University of Okara, Okara Jahan Nazish 2 Department of Chemistry, University of Agriculture, Faisalabad Khalil-Ur-Rahman 3 Department of Biochemistry, University of Agriculture, Faisalabad Asi Muhammad 4 Food Toxicology Lab, Plant Protection Division, Nuclear Institute for Agriculture and Biology, Faisalabad Zafar Waseeq-Ul-Islam 5 Department of Computer Science, COMSATS University of Information and Technology, Islamabad Pawar SS, Dahifale BR, Nagargoje SP, Shendge RS. Nanosuspension technologies for delivery of drugs. Nanosci Nanotech Res 2017; 4(2): 5966. Kilor V, Sapkal N, Daud A, Humne S, Gupta T. Development of stable nanosuspension loaded oral films of glimepiride with improved bioavailability. Int J Appl Pharm 2017; 9(2): 28-33. He J, Han Y, Xu G, Yin L, Neubi MN, Zhou J, et al. Preparation and evaluation of celecoxib nanosuspensions for bioavailability enhancement. RSC Adv 2017; 7: 13053-13064. Wang Y, Zheng Y, Zhang L, Wang Q, Zhang D. Stability of nanosuspensions in drug delivery. J Control Release 2013; 172(3): 11261141. ElShagea HN, ElKasabgy NA, Fahmy RH, Basalious EB. Freeze-dried self-nanoemulsifying self-nanosuspension (snesns): A new approach for the preparation of a highly drug-loaded dosage form. AAPS Pharm Sci Tech 2019; 20: 1-14. Gao L, Zhang D, Chen M, Duan C, Dai W, Jia L, et al. Studies on pharmacokinetics and tissue distribution of oridonin nanosuspensions. Int J Pharm 2008; 355(1-2): 321-327. Srivalli KMR, Mishra B. Drug nanocrystals: A way toward scale-up. Saudi Pharm J 2016; 24(4): 386-404. Geng T, Banerjee P, Lu Z, Zoghbi A, Li T, Wang B. Comparative study on stabilizing ability of food protein, non-ionic surfactant and anionic surfactant on BCS type Π drug carvedilol loaded nanosuspension: Physicochemical and pharmacokinetic investigation. Eur J Pharm Sci 2017; 109: 200-208. Jahan N, Rehman KU, Ali S, Bhatti IA. Antioxidant activity of gemmo therapeutically treated indigenous medicinal plants. Asian J Chem 2011; 23: 3461-3470. Zafar F, Jahan N, Rahman KU, Khan A, Akram W. Cardioprotective potential of polyphenolic rich green combination in catecholamine induced myocardial necrosis in rabbits. Evid Based Complement Alternat Med 2015; 2015: 734903. Ramesh R, Dhanaraj T. GC-MS analysis of bioactive compounds in Terminalia arjuna root. Int J Multidiscip Res Dev 2015; 2: 460-462. Shanbhag D, Khandagale A. Screening and standardization of Terminalia arjuna used as medicine in homeopathy using hptlc method. Int J Ana Bioana Chem 2011; 1: 57-60. Pooja S. Production of flavonoids from Terminalia arjuna (ROXB.) in vivo and in vitro tissue cultures. Int J ChemTech Res 2014; 6: 881-885. Gao L, Liu G, Wang X, Liu F, Xu Y, Ma J. Preparation of a chemically stable quercetin formulation using nanosuspension technology. Int J Pharm 2011; 404(1-2): 231-237. Arshad MS, Sohaib M, Nadeem M, Saeed F, Imran A, Javed A, et al. Status and trends of nutraceuticals from onion and onion by-products: A critical review. Cogent Food Agric 2017; 3: 1-14. Penalva R, Gonzalez-Navarro CJ, Gamazo C, Esparza I, Irache JM. Zein nanoparticles for oral delivery of quercetin: Pharmacokinetic studies and preventive anti-inflammatory effects in a mouse model of endotoxemia. Nanomedicine 2017; 13(1): 103-110. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. Sci World J2013; 2013: 162750. Thadkala K, Nanam PK, Rambabu B, Sailu C, Aukunuru J. Preparation and characterization of amorphous ezetimibe nanosuspensions intended for enhancement of oral bioavailability. Int J Pharm Investig 2014; 4(3): 131-137. Khan S, Iqbal T, Ahmed N, Jamil A. Antioxidant, hemolytic and mutagenic potential of Psoralea corylifolia. J Animal Plant Sci 2015; 25(5): 1451-1456. Gera S, Talluri S, Rangaraj N. Formulation and evaluation of naringenin nanosuspensions for bioavailability enhancement. AAPS Pharm Sci Tech 2017; 18(8): 3151-3162. Sun W, Mao S, Shi Y, Li LC, Fang L. Nanonization of itraconazole by high pressure homogenization: Stabilizer optimization and effect of particle size on oral absorption. J Pharm Sci 2010; 100(8): 3365-3373. Jahan N, Rehman KU, Ali S, Asi MR, Akhtar A. Cardioprotective potential of gemmomodified extract of Terminalia arjuna against chemically induced myocardial injury in rabbits. Pak Vet J 2012; 32: 255-259. Huang S, Chang WH. Advantages of nanotechnology-based chinese herb drugs on biological activities. Curr Drug Metab 2009; 10(8): 905-913. Dizaj SM, Vazifehasl Z, Salatin S, Adibkia K, Javadzadeh Y. Nanosizing of drugs: Effect on dissolution rate. Res Pharm Sci 2015; 10(2): 95-108. Abd-Elsalam WH, ElKasabgy NA. Mucoadhesive olaminosomes: A novel prolonged release nanocarrier of agomelatine for the treatment of ocular hypertension. Int J Pharm 2019; 560: 235-245. Rachmawati H, Shaal LA, Muller RH, Keck CM. Development of curcumin nanocrystal: Physical aspects. J Pharm Sci 2013; 102(1): 204214. Hong C, Dang Y, Lin G, Yao Y, Li G, Ji G, et al. Effects of stabilizing agents on the development of myricetin nanosuspension and its characterization: An in vitro and in vivo evaluation. Int J Pharm 2014; 477(1-2): 251-260. Karadag A, Ozcelik B, Huang Q. Quercetin nanosuspensions produced by high-pressure homogenization. J Agric Food Chem 2014; 62(8): 18521859. Papdiwal A, Pande V, Sagar K. Design and characterization of zaltoprofen nanosuspension by precipitation method. Der Pharma Chemica 2014; 6(3): 161-168. Sumathi R, Tamizharasi S, Gopinath K, Sivakumar T. Formulation, characterization and in vitro release study of silymarin nanosuspension. Indo Am J Pharm Sci 2017; 4: 85-94. [31]Thakkar HP, Patel BV, Thakkar SP. Development and characterization of nanosuspensions of olmesartan medoxomil for bioavailability enhancement. J Pharm Bioall Sci 2011; 3(3): 426-434. Mohd-Fuat AR, Kofi EA, Allan GG. Mutagenic and cytotoxic properties of three herbal plants from Southeast Asia. Trop Biomed 2007; 24(2): 4959. Ravichandran R. Studies on dissolution behaviour of nanoparticulate curcumin formulation. Adv Nanoparticles 2013; 2(1): 51-59. Hussain N, Jaitley V, Florence AT. Recent Advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev 2001; 50(1-2): 107-142. Yuan H, Chen J, Du YZ, Hu FQ, Zeng S, Zhao HL. Studies on oral absorption of stearic acid sln by a novel fluorometric method. Colloids Surf B Biointerfaces 2007; 58(2): 157-164. Gursoy RN, Benita S. Self-emulsifying drug delivery systems (sedds) for improved oral delivery of lipophilic drugs. Biomed Pharmacother 2004; 58(3): 173-182. Liu D, Pan H, He F, Wang X, Li J, Yang X, et al. Effect of particle size on oral absorption of carvedilol nanosuspensions: In vitro and in vivo evaluation. Int J Nanomed 2015; 10: 6425-6434. Wang Y, Zhang D, Liu Z, Liu G, Duan C, Jia L, et al. In vitro and in vivo evaluation of silybin nanosuspensions for oral and intravenous delivery. Nanotechnology 2010; 21(15): 1-12. Hao J, Gao Y, Zhao J, Zhang J, Li Q, Zhao Z, et al. Preparation and optimization of resveratrol nanosuspensions by antisolvent precipitation using box-behnken design. AAPS Pharm Sci Tech 2015; 16(1): 118-128.

4.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 584-596, 2017.
Article in English | WPRIM | ID: wpr-812078

ABSTRACT

Stress and emotion are associated with several illnesses from headaches to heart diseases and immune deficiencies to central nervous system. Terminalia arjuna has been referred as traditional Indian medicine for several ailments. The present study aimed to elucidate the effect of T. arjuna bark extract (TA) against picrotoxin-induced anxiety. Forty two male Balb/c mice were randomly divided into six experimental groups (n = 7): control, diazepam (1.5 mg·kg), picrotoxin (1 mg·kg) and three TA treatemt groups (25, 50, and 100 mg/kg). Behavioral paradigms and PCR studies were performed to determine the effect of TA against picrotoxin-induced anxiety. The results showed that TA supplementation increased locomotion towards open arm (EPM) and illuminated area (light-dark box test), and increased rearing frequency (open field test) in a dose dependent manner, compared to picrotoxin (P < 0.05). Furthermore, TA increased number of licks and shocks in Vogel's conflict. PCR studies showed an up-regulation of several genes, such as BDNF, IP, DL, CREB, GABA, SOD, GPx, and GR in TA administered groups. In conclusion, alcoholic extract of TA bark showed protective activity against picrotoxin in mice by modulation of genes related to synaptic plasticity, neurotransmitters, and antioxidant enzymes.


Subject(s)
Animals , Humans , Male , Mice , Antioxidants , Metabolism , Anxiety Disorders , Drug Therapy , Genetics , Metabolism , Psychology , Brain-Derived Neurotrophic Factor , Genetics , Metabolism , Dopamine Agents , GABA Agents , Glutathione Peroxidase , Genetics , Metabolism , Mice, Inbred BALB C , Neuronal Plasticity , Neurotransmitter Agents , Metabolism , Phytotherapy , Picrotoxin , Plant Bark , Chemistry , Plant Extracts , Serotonin Agents , Superoxide Dismutase-1 , Genetics , Metabolism , Terminalia , Chemistry
5.
Article in English | IMSEAR | ID: sea-178395

ABSTRACT

Background: Terminalia arjuna is being used in various cardiovascular diseases as cardiotonic, diuretic & in hypercholesterolemia. Studies conflict each other for its mechanism of action. This study aims to investigate effect of 90% alcoholic extract of Terminalia arjuna on in vitro isolated rabbit’s heart & to find its probable mechanism of action. Objective: To study the preliminary pharmacological effects of 90% alcoholic extract of Terminalia arjuna in-vitro on isolated heart, coronary blood flow, and to study its probable mechanism of action. Material & Methods: Effect of Terminalia arjuna was observed on heart rate, coronary blood flow, amplitude on in vitro isolated perfused rabbit’s heart mounted on langendorff apparatus & further cholinergic & adrenergic blockers were used to study the mechanism of action. Six experiments were conducted for each parameter & data was analysed using Student’s t test. Results: Terminalia arjuna causes mean percentage decrease of 7.26%, 9.31% & 20.51% in heart rate, decrease of 10.34%, 16.64%, 20.51% in coronary blood flow & decrease of 15.11%, 12.61%, 11.65% in amplitude at 25μg, 50μg & 100μg doses respectively. The decrease in heart rate, coronary blood flow & amplitude persists even after cholinergic & adrenergic blockers suggesting that cholinergic & adrenergic receptors are not involved in mechanism of Terminalia arjuna. Conclusion: Terminalia arjuna cardiodepressant effect does not involve cholinergic & adrenergic receptors.

6.
Asian Pacific Journal of Tropical Biomedicine ; (12): 960-966, 2013.
Article in Chinese | WPRIM | ID: wpr-672759

ABSTRACT

Objective: To investigate phytochemical screening, antimicrobial activity and qualitative thin layer chromatographic separation of flavonoid components, antioxidant activity and total flavonoid compound of Terminalia arjuna. Methods:For phytochemical screening, some common and available standard tests were done. Antimicrobial bioassay was done through agar well diffusion method. Detection of antioxidant activity and flavonoid compounds were done through thin layer chromatography. Total antioxidant activity was measured by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) in colorimetric method. Aluminum chloride colorimetric method was used for total flavonoid determination. Results:Phytochemical screening showed the active compounds presence in high concentration, such as phytosterol, lactones, flavonoids, phenolic compounds and tannins and glycosides. The antimicrobial activity of extract showed that greater inhibition zone against Gram negative bacteria than Gram positive bacteria. This methanolic extract showed a promising antioxidant activity, as absorption of DPPH redicles decreased in DPPH free radical scavenging assay. Flavonoids components having antioxidant property present in the methanol extract at a level of 199.00 mg quercetin equivalent/g of dried methanol extract in colorimetric method. Conclusions: The Terminalia arjuna bark extract revealed the presence of bio-active constituents which are known to exhibit medicinal as well as physiological activities.

7.
Indian J Exp Biol ; 2011 Apr; 49(4): 282-288
Article in English | IMSEAR | ID: sea-145126

ABSTRACT

The three fractions diethyl ether, ethyl acetate and ethanol. of T. arjuna exerted hypolipidemic and antioxidative effects at two different doses levels of 175 and 350 mg/kg body weight in Poloxamer (PX)-407 induced hyperlipidemic albino Wistar rats. The hypolipidemic and antioxidant effects of T. arjuna fractions were noticed as EtOH>diethyl ether>ethyl acetate. The results suggest that ethanolic fraction of T. arjuna possesses the potent properties of being antioxidant and hypolipidemic than other fractions. In turn, it has therapeutic potential for the prevention of coronary arterial disease.

8.
Indian J Exp Biol ; 2010 Mar; 48(3): 238-247
Article in English | IMSEAR | ID: sea-144963

ABSTRACT

Herbal plants with antioxidant activities are widely used in Ayurvedic medicine for cardiac and other problems. Arjunolic acid is one such novel phytomedicine with multifunctional therapeutic applications. It is a triterpenoid saponin, isolated earlier from Terminalia arjuna and later from Combretum nelsonii, Leandra chaeton etc. Arjunolic acid is a potent antioxidant and free radical scavenger. The scientific basis for the use of arjunolic acid as cardiotonic in Ayurvedic medicine is proven by its vibrant functions such as prevention of myocardial necrosis, platelet aggregation and coagulation and lowering of blood pressure, heart rate and cholesterol levels. Its antioxidant property combined with metal chelating property protects organs from metal and drug induced toxicity. It also plays an effective role in exerting protection against both type I and type II diabetes and also ameliorates diabetic renal dysfunctions. Its therapeutic multifunctionality is shown by its wound healing, antimutagenic and antimicrobial activity. The mechanism of cytoprotection conferred by arjunolic acid can be explained by its property to reduce the oxidative stress by enhancing the antioxidant levels. Apart from its pathophysiological functions, it possesses dynamic insecticidal property and it is used as a structural molecular framework in supramolecular chemistry and nanoscience. Esters of arjunolic acid function as gelators of a wide variety of organic liquids. Experimental studies demonstrate the versatile effects of arjunolic acid, but still, further investigations are necessary to identify the functional groups responsible for its multivarious effects and to study the molecular mechanisms as well as the probable side effects/toxicity owing to its long-term use. Though the beneficial role of this triterpenoid has been assessed from various angles, a comprehensive review of its effects on biochemistry and organ pathophysiology is lacking and this forms the rationale of this review.

SELECTION OF CITATIONS
SEARCH DETAIL