Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.150
Filter
1.
Journal of Clinical Hepatology ; (12): 343-350, 2024.
Article in Chinese | WPRIM | ID: wpr-1007250

ABSTRACT

ObjectiveTo investigate the therapeutic effect of Qingjie Huagong decoction (QJHGD) on a mouse model of severe acute pancreatitis (SAP) and the mechanism of action of QJHGD against inflammatory response. MethodsA total of 36 male C57BL/6J mice were randomly divided into blank group, model group, Western medicine group (ulinastatin), and low-, middle-, and high-dose QJHGD groups, with 6 mice in each group. All mice except those in the blank group were given 5% sodium taurocholate by retrograde pancreaticobiliary injection to establish a model of SAP. After modeling, the mice in the low-, middle-, and high-dose groups were given QJHGD (1, 2, and 4 g/kg, respectively) by gavage, and those in the Western medicine group were given intraperitoneal injection of ulinastatin (5×104 U/kg), for 7 days in total. HE staining was used to observe the histopathological changes of the pancreas; ELISA was used to measure the levels of α-amylase, lipase, interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-18 (IL-18), and tumor necrosis factor-α (TNF-α) in mice; RT-qPCR was used to measure the mRNA expression levels of NOD-like receptor protein3 (NLRP3), Toll-like receptor 4 (TLR4), and nuclear factor-kappa B (NF-κB) in pancreatic tissue; immunohistochemistry was used to measure the positive expression rates of NLRP3, TLR4, and NF-κB in pancreatic tissue; Western blot was used to measure the protein expression levels of NLRP3, TLR4, NF-κB, IL-1β, and IL-6. An analysis of variance was used for comparison of continuous data between multiple groups, and the least significant difference t-test was used for further comparison between two groups. ResultsCompared with the blank group, the model group had diffuse destruction of pancreatic tissue structure, focal dilatation of pancreatic lobular septum, pancreatic acinar atrophy, and massive inflammatory cell infiltration, as well as significant increases in the content of α-amylase, lipase, IL-1β, IL-6, IL-8, IL-18, and TNF-α (all P<0.05), the mRNA expression levels and positive expression rates of NLRP3, TLR4, and NF-κB (all P<0.05), and the protein expression levels of NLRP3, TLR4, NF-κB, IL-1β, and IL-6 (all P<0.05). Compared with the model group, the low-, middle-, and high-dose QJHGD groups and the Western medicine group had slightly tighter and more intact structure of pancreatic tissue, ordered arrangement of pancreatic acinar cells, a small amount of inflammatory cell infiltration, and hemorrhagic foci of pancreatic lobules, as well as significant reductions in the content of α-amylase, lipase, IL-1β, IL-6, IL-8, IL-18, and TNF-α (all P<0.05), the mRNA expression levels and positive expression rates of NLRP3, TLR4, and NF-κB (all P<0.05), and the protein expression levels of NLRP3, TLR4, NF-κB, IL-1β, and IL-6 (all P<0.05). ConclusionQJHGD may exert a protective effect on the pancreatic tissue of SAP mice by inhibiting the activation of NLRP3/TLR4/NF-κB signaling pathway-related proteins, reducing the release of inflammatory mediators, and preventing the enhancement of inflammatory cascade response.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 20-28, 2024.
Article in Chinese | WPRIM | ID: wpr-1006551

ABSTRACT

ObjectiveMolecular docking and animal experiments were employed to explore the protective effect and mechanism of Da Chengqitang (DCQD) on intestinal barrier in septic mice. MethodText mining method was used to screen the active ingredients in DCQD. AutoDock Tools and Discovery Studio were used to study the interactions of active components with the core target proteins [claudin-1, tumor necrosis factor (TNF)-α, interleukin (IL)-6, endogenous antimicrobial peptide mCRAMP, Toll-like receptor 4 (TLR4), and myeloid differentiation primary response gene 88 (MyD88)] in sepsis. Fifty C57BL/6 mice were randomized into sham, model, low- and high-dose (4 g∙kg-1 and 8 g∙kg-1) DCQD, and ulinastatin groups (n=10). Before, during, and after the day of modeling surgery, each group was administrated with corresponding drugs. The mice in other groups except the model group were subjected to modeling by cecal ligation and puncture. Enzyme-linked immunosorbent assay (ELISA) was used measure the serum level of D-lactic acid to assess intestinal mucosa permeability. Hematoxylin-eosin staining was employed to observe the histopathological changes in the ileum and assess the intestinal mucosal damage and inflammatory infiltration. Western blotting was employed to determine the expression levels of tight junction proteins claudin-1 and occludin in the ileal tissue, which were indicative of the bowel barrier function. The TNF-α and IL-6 levels were measured by ELISA to assess the intestinal inflammation. The expression of mCRAMP in the ileal tissue was observed by immunohistochemistry. The mRNA levels of mCRAMP, TLR4, and MyD88 in mouse ileal tissue were determined by Real-time polymerase chain reaction, on the basis of which the mechanism of DCQD in protecting the intestinal barrier of septic mice was explored. ResultMolecular docking results showed that most of the 10 active ingredients of DCQD that were screened out by text mining could bind to sepsis targets by van der Waals force, hydrogen bonding, and other conjugated systems. The results of animal experiments showed that compared with the model group, low- or high-dose DCQD lowered the D-lactic acid level in the serum (P<0.01), alleviated damage to the ileal tissue and mucosal edema, protected the small intestine villus integrity, reduced inflammatory cell infiltration, promoted the expression of claudin-1 (P<0.01), lowered the IL-6 level (P<0.01), up-regulated the mRNA and protein levels of mCRAMP (P<0.01), and down-regulated the mRNA and protein levels of TLR4 and MyD88 (P<0.01) in the ileal tissue. In addition, high-dose DCQD lowered the TNF-α level and promoted the expression of occludin in the ileum tissue (P<0.01), and low-dose DCQD up-regulated the protein level of occludin in the ileum tissue (P<0.05). ConclusionDCQD has a protective effect on intestinal barrier in septic mice. It can reduce intestinal inflammation, repair intestinal mucosal damage, improve the tight junction protein level, and reduce intestinal mucosal permeability by up-regulating the mRNA and protein levels of mCRAMP and the down-regulating the expression of genes in the TLR4/MyD88 pathway.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 64-70, 2024.
Article in Chinese | WPRIM | ID: wpr-1003409

ABSTRACT

ObjectiveTo explore the protective effect and mechanism of Zingiberis Rhizoma Recens alcohol extract on lipopolysaccharide (LPS)-induced acute lung injury in mice. MethodBalb/c mice were randomly divided into normal group, model group, dexamethasone group, and low- and high-dose Zingiberis Rhizoma Recens groups. Mice in the normal group were instilled with normal saline through the nose, and the other groups were instilled with normal saline containing LPS (50 μg). After 30 minutes of modeling, the dexamethasone group was gavaged with 5 mg·kg-1 of dexamethasone acetate solution, the low- and high-dose Zingiberis Rhizoma Recens groups were gavaged with different doses of (7, 14 g·kg-1) of Zingiberis Rhizoma Recens alcohol extract, and the normal group and the model group were gavaged with the same volume of water. After 24 hours of modeling, the total number of white blood cells in bronchoalceolar lavage fluid (BALF) was detected by cell counter, and the levels of the inflammatory factors including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and superoxide dismutase (SOD), and myeloperoxidase (MPO) was detected by enzyme-linked immunosorbent assay (ELISA). Haematoxylin-eosin (HE) staining method was used to observe the pathological changes of lung tissue in each group, and the Western blot was used to detect the protein expression of nuclear transcription factor (NF)-κB p65, phosphorylation (p)-NF-κB p65, and Toll-like receptor 4 (TLR4) in lung tissue. ResultCompared with the normal group, the white blood cell count in BALF and the levels of TNF-α, IL-1β, IL-6, and MPO in the model group was increased (P<0.01), and the level of SOD was decreased (P<0.05). Pathological damage of lung tissue was obvious, and the protein expression of NF-κB p65, p-NF-κB p65, and TLR4 in lung tissue was increased (P<0.01). Compared with the model group, the white blood cell count in BALF and the levels of TNF-α, IL-1β, IL-6, and MPO in the treatment group was decreased (P<0.05,P<0.01), and the level of SOD was increased (P<0.05,P<0.01). Pathological damage of lung tissue was alleviated, and the protein expression of NF-κB p65, p-NF-κB p65, and TLR4 in lung tissue was decreased (P<0.01). ConclusionZingiberis Rhizoma Recens alcohol extract may play a protective role in LPS-induced acute lung injury in mice by inhibiting the TLR4/NF-κB signaling pathway.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 225-235, 2024.
Article in Chinese | WPRIM | ID: wpr-1016483

ABSTRACT

Parkinson's disease (PD) is a common neurological degenerative disease in the middle-aged and elderly, characterized by pathological changes of progressive degeneration of dopaminergic neurons in the substantia nigra and Lewy body formation, with high prevalence and long course of disease. The drug is mainly used to treat PD in western medicine, and the early curative effect is remarkable. However, with the progression of the disease and the long-term use of the drug, the efficacy will be significantly reduced, or there may be sports complications, and the long-term efficacy is not good. As a traditional medical system, traditional Chinese medicine has a unique understanding of PD. Traditional Chinese medicine plays an important role in the treatment of PD, which is natural, mild, safe, and effective, and it can cooperate with western medicine to enhance its efficacy and reduce the adverse reactions of western medicine. The pathogenesis of PD is complex, involving multiple levels such as mitochondrial dysfunction and apoptosis. Neuroinflammation is also involved in the progressive degeneration of dopaminergic neurons in PD. The Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway is a classic inflammatory pathway, and its expression changes play an important role in the occurrence and development of inflammatory response in the body. In recent years, the research on this pathway in TCM is increasing. This paper summarized the literature of traditional Chinese and western medicine in the past 10 years and reviewed the relevant mechanism of TCM regulation of TLR4/NF-κB pathway in the treatment of PD from the aspects of TCM monomer, compound, and other TCM therapies, so as to provide some references for the search for new targets of drug therapy and gene therapy and the in-depth study of TCM prevention and treatment of PD.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 29-36, 2024.
Article in Chinese | WPRIM | ID: wpr-1016459

ABSTRACT

ObjectiveTo investigate the effects of Tongluo Juanbi granules on chondrocyte apoptosis and Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway of rabbits with knee osteoarthritis (KOA) and study the mechanism of Tongluo Juanbi granules in the prevention and treatment of KOA. MethodThirty New Zealand rabbits were randomly assigned to the following five groups (n=6): sham group, model group, low-dose and high-dose groups of Tongluo Juanbi granules (4.1 and 8.2 g·kg-1·d-1), and celecoxib group (10.9 mg·kg-1·d-1). The KOA model was established by destabilization of the medial meniscus (DMM) for six weeks. Six weeks after the modeling, the drug was given once a day for eight weeks. The pathological changes of cartilago articularis were observed by hematoxylin-eosin (HE) staining and Safranin O-Fast Green staining. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was performed to detect chondrocyte apoptosis. Enzyme-linked immunosorbent assay (ELISA) was used to detect the contents of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in synovial fluid. The mRNA and protein expression levels of genes related to the TLR4/MyD88/NF-κB signaling pathway were detected by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot, respectively. ResultCompared with the sham group, the cartilago articularis of the model group significantly degenerated. Mankin's score was increased (P<0.01), and the contents of IL-1β and TNF-α in synovial fluid were increased (P<0.01). The number of apoptosis of chondrocytes was increased (P<0.01). The mRNA and protein expressions of TLR4, MyD88, and NF-κB p65 in cartilage tissue were up-regulated (P<0.01), while the mRNA and protein expressions of Bcl-2 were down-regulated (P<0.01). Compared with the model group, chondrocyte degeneration in both low-dose and high-dose groups of Tongluo Juanbi granules was improved, and Mankin's score was decreased (P<0.01). The contents of IL-1β and TNF-α were decreased (P<0.01), and the number of apoptosis of chondrocytes was decreased (P<0.01). The mRNA and protein expressions of TLR4, MyD88, and NF-κB p65 in cartilage tissue were down-regulated (P<0.01), while the mRNA and protein expressions of Bcl-2 were up-regulated (P<0.01). In addition, in the above observation indicators, the high-dose group of Tongluo Juanbi granules was significantly superior to the low-dose group of Tongluo Juanbi granules. ConclusionTongluo Juanbi granules could inhibit chondrocyte apoptosis in rabbits with KOA and improve cartilage degeneration, which may be related to inhibiting inflammatory responses mediated by TLR4/MyD88/NF-κB signaling pathway.

6.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 263-271, 2024.
Article in Chinese | WPRIM | ID: wpr-1013364

ABSTRACT

Acute pancreatitis (AP) is one of the most clinically common acute digestive disorders characterized by quick onset,rapid progression,severe condition,and high mortality. If the disease is not timely intervened in the early stage,it can develop into severe AP in the later stage,which damages the long-term quality of life and brings serious economic burden to patients and their families. However, the pathogenesis of this disease is complex and has not been fully explained. The generation and development of AP is closely related to many signaling pathways. Among them,Toll-like receptor 4(TLR4),as a transmembrane signal transduction receptor,can mediate immune response and inflammatory response,and play a key role in the occurrence and development of AP. Traditional Chinese medicine(TCM)can regulate the TLR4 signaling pathway with multiple targets,multiple effects,and multiple administration methods to inhibit inflammatory response,and effectively intervene in the progression of AP, which has gradually become a new craze for preventing and treating AP. Many studies have shown that TCM has obvious advantages in the prevention and treatment of AP. It can effectively treat AP by regulating TLR4 signaling pathway,strengthening immune resistance and defense,and inhibiting inflammatory response. Despite of the research progress,there is still a lack of comprehensive review on TCM regulation of TLR4 signaling pathway in the treatment of AP. Therefore,the literature on TCM regulation of TLR4 signaling pathway published in recent years was systematically reviewed and elaborated,aiming to provide new ideas for the treatment of AP and further drug development.

7.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 233-244, 2024.
Article in Chinese | WPRIM | ID: wpr-1012713

ABSTRACT

Ulcerative colitis (UC) is a chronic inflammatory bowel disease primarily affecting the colon and rectum, with the typical symptoms such as abdominal pain, bloody diarrhea, and tenesmus. The pathogenesis of UC remains to be fully elucidated. The disease is prone to recurrence, seriously affecting the patients' quality of life. Conventional therapies for UC have limitations, including unsatisfactory clinical efficacy, lengthy courses, and adverse reactions. Therefore, there is an urgent need to explore new therapeutic agents. Peroxisome proliferator-activated receptor gamma (PPARγ), a ligand-dependent nuclear receptor protein that plays a crucial role in maintaining intestinal homeostasis, is closely associated with the onset and development of UC. Traditional Chinese medicine (TCM) has advantages such as multi-targeting and mild side effects in the treatment of UC. Recent studies have shown that TCM can exert the therapeutic effects on UC by modulating PPARγ. The TCM methods for regulating PPARγ include clearing heat, drying dampness, moving Qi, activating blood, resolving stasis, invigorating the spleen, warming the kidney, and treating with both tonification and elimination. On one hand, TCM directly activates PPARγ or mediates signaling pathways such as nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), Toll-like receptor 4 (TLR4), and regulates helper T cell 17 (Th17)/regulatory T cell (Treg) balance to promote macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, thereby inhibiting intestinal inflammation. On the other hand, TCM regulates the intestinal metabolism to activate PPARγ, lower the nitrate level, and maintain local hypoxia. In this way, it can restore the balance between specialized anaerobes and facultative anaerobes, thereby improving the gut microbiota and treating UC. This article summarizes the role of PPARγ in UC and reviews the research progress of TCM in treating UC by intervening in PPARγ in the last five years, aiming to give insights into the treatment and new drug development for UC.

8.
China Pharmacy ; (12): 407-412, 2024.
Article in Chinese | WPRIM | ID: wpr-1011319

ABSTRACT

OBJECTIVE To investigate the improvement effect and potential mechanism of “Layers adjusting external application” paste on synovial fibrosis (SF) in rats with knee osteoarthritis (KOA). METHODS Male SD rats were randomly divided into sham operation group, KOA group and Layers adjusting external application group, with 8 rats in each group. KOA model was induced by the anterior cruciate ligament disruption method in KOA group and Layers adjusting external application group. Fourteen days after modeling, the Layers adjusting external application group was given “Layers adjusting external application” paste [Sanse powder (8 g for every 100 cm2), Compound sanhuang ointment (5 g for every 100 cm2)] on the knee joint, 8 h every day, for 28 d in total. After the last administration, the degree of synovitis and fibrosis in rats was observed, and Krenn scoring was performed in each group. The expressions of collagen Ⅰ, high mobility group protein B1 (HMGB1) and phosphorylated nuclear factor-κB p65 (p-NF-κB p65) were detected in the synovial membrane; the contents of interleukin-1β (IL- 1β), IL-6 and tumor necrosis factor-α (TNF-α) in serum as well as the expressions of fibrosis-related and HMGB1/Toll-like receptor 4 (TLR4)/NF-κB signaling pathway-related proteins and mRNA were detected in synovial tissue. RESULTS Compared with the sham operation group, the synovial lining cells in the KOA group showed significant proliferation and disordered arrangement, the inflammatory cell infiltration and collagen fiber deposition were obvious; the positive expressing cells of collagen Ⅰ, HMGB1 and p-NF-κB p65 were increased significantly; the contents of IL-1β, IL-6 and TNF-α in serum, the expressions of fibrosis-related protein (transforming growth factor-β, collagen Ⅰ, tissue inhibitor of metalloproteinase 1, α-smooth muscle actin) and their mRNA as well as theexpressions of HMGB1, TLR4 protein and their mRNA, the expressions of p-NF-κB p65 protein and NF-κB p65 mRNA were all increased significantly in synovial tissues of rats (P<0.01). Compared with the KOA group, the pathological changes in the synovial tissue of rats in Layers adjusting external application group were significantly improved, and the above quantitative indicators were significantly reversed (P<0.05 or P<0.01). CONCLUSIONS “Layers adjusting external application” paste could significantly improve SF in KOA rats, the mechanism of which may be associated with the inhibition of the activation of HMGB1/ TLR4/NF-κB signaling pathway.

9.
Article | IMSEAR | ID: sea-223534

ABSTRACT

Background & objectives: Toll-like receptors (TLRs) are transmembrane proteins that recognize specific molecular patterns and activate downstream cytokine production usually for the eradication of invading pathogens. The objective of this study was to evaluate the genetic polymorphism of TLR2 Arg753Gln (rs 5743708) and soluble cytokines and TLR2 expression levels in malaria disease cases. Methods: The study included prospectively collected 2 ml blood samples from 153 individuals clinically suspected for malaria and confirmed by microscopy and RDT from Assam. Stratification of the study groups was done as healthy control (HC, n=150), uncomplicated malaria (UC-M, n=128) and severe malaria (SM, n=25). The PCR-restriction fragment length polymorphism (RFLP) method was applied for the analysis of TLR2 Arg753Gln polymorphism and following the ELISA for soluble serum TLR2 (sTLR2) and its associated downstream cytokines, viz. tumour necrosis factor (TNF)-? and interferon (IFN)-? levels. Results: Variation in TLR2 Arg753Gln gene showed no association with the susceptibility and the severity of malarial infection. Soluble TLR2 expression was significantly higher in uncomplicated malaria (UC-M) cases compared to healthy controls (P=0.045) and in terms of SM cases, the expression was also found to be higher in UC-M cases (P=0.078). The TNF-? expression was significantly higher in SM cases compared to both UC-M and control (P=0.003 and P=0.004). Similarly, significantly elevated expression of IFN-? was noted in SM cases compared to both UC-M (P=0.001) and healthy controls (P<0.001). Interpretation & conclusions: The present study suggests the association of deregulated TLR2 pathway that leads to the deleterious downstream immune response in the development of malarial pathogenicity.

10.
Braz. J. Anesth. (Impr.) ; 73(4): 441-445, 2023. graf
Article in English | LILACS | ID: biblio-1447632

ABSTRACT

Abstract Background Morphine is an analgesic agent used for cancer pain management. There have been recent concerns that the immunosuppressant properties of morphine can also promote cancer metastasis. Morphine is an agonist for toll like receptor 4 (TLR4) that has a dual role in cancer development. The promotor or inhibitor role of morphine in cancer progression remains controversial. We investigated the effects of morphine on migration and metastasis of melanoma cells through TLR4 activation. Methods Mouse melanoma cells (B16F10) were treated with only morphine (0, 0.1, 1, and 10 μM) or in combination with a TLR4 inhibitor (morphine10 μM +CLI-095 1μM) for either 12 or 24 hours. Migration of cells was analyzed by transwell migration assays. Twenty C57BL/6 male mice were inoculated with B16F10 cells via the left ventricle of the heart and then randomly divided into two groups (n = 10 each) that received either morphine (10 mg.kg−1, sub-q) or PBS injection for 21 days (control group). Animals were euthanized and their lungs removed for evaluation of metastatic nodules. Results Morphine (0.1, 1, and 10 μM) increased cell migration after 12 hours (p < 0.001) and after 24 hours of treatment with morphine (10 μM) (p < 0.001). Treatment with CLI-095 suppressed migration compared to cells treated with morphine alone (p < 0.001). Metastatic nodules in the morphine-treated group (64 nodules) were significantly higher than in the control group (40 nodules) (p < 0.05). Conclusion Morphine increases the migration and metastasis of mouse melanoma cells by activating TLR4.


Subject(s)
Animals , Male , Rats , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Melanoma/pathology , Morphinum/pharmacology , Toll-Like Receptor 4
11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 93-101, 2023.
Article in Chinese | WPRIM | ID: wpr-969603

ABSTRACT

ObjectiveTo investigate the effect of baicalein (BAI) on SH-SY5Y cell injury in lipopolysaccharide (LPS)-activated BV-2 cells conditioned medium and its mechanism. MethodThe BV-2 cells were activated with 1 mg∙L-1 of LPS to establish the conditioned medium of the LPS group, and a blank group and groups of BAI with low, medium, and high concentrations (4, 8, 16 μmol∙L-1) were established. SH-SY5Y cells were cultured with the conditioned medium of each group. The cell viability of BV-2 cells in each group after the intervention was determined by cell counting kit-8 (CCK-8). The content of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in the supernatant of BV-2 cells in each group was determined by enzyme-linked immunosorbent assay (ELISA). The protein expression of α-synuclein (α-syn) and tyrosine hydroxylase (TH) in SH-SY5Y cells was observed by immunohistochemical (IHC) staining, and the nuclear transfer of nuclear factor kappa-B p65 protein (NF-κB p65, p65) in SH-SY5Y cells was observed by immunofluorescence (IF). The protein expression of Toll-like receptor 4(TLR4), p65, phosphorylated p65 (p-p65), and Myeloid differentiation factor 88 (MyD88) in SH-SY5Y cells was observed by Western blot. ResultAs compared with the blank group, the viability of BV-2 cells in the LPS group was significantly decreased (P<0.01), and the content of TNF-α, IL-6, and IL-1β in the cell supernatant was significantly increased (P<0.01). As compared with the LPS group, the cell viability was significantly increased in groups of BAI with low, medium, and high concentrations (P<0.01), and TNF-α in the cell supernatant was significantly decreased (P<0.01). The content of IL-6 in the cell supernatant was decreased in the BAI group with high concentration (P<0.05), and the content of IL-1β in the cell supernatant was significantly decreased in the BAI groups with medium and high concentrations (P<0.01). The results of conditioned medium cultured SH-SY5Y cells showed that as compared with the blank group, the protein expression of p65 in the LPS group entered into the nucleus and accumulated, and the protein expression of TH was significantly decreased (P<0.01), while that of α-syn, TLR4, MyD88, and p-p65 was increased (P<0.05, P<0.01). Compared with the LPS group, the protein expression of p65 in SH-SY5Y cells in BAI groups with low, medium, and high concentrations gradually dispersed into the cytoplasm and had the enhanced protein expression of TH (P<0.01) but the lowered protein expression of α-syn (P<0.01). The protein expression of TLR4, MyD88, and p-p65 was decreased in the BAI group with high concentration (P<0.05, P<0.01), the protein expression of p-p65 and MyD88 was decreased in the BAI group with medium concentration, and the protein expression of MyD88 was decreased in the BAI group with low concentration (P<0.05). There was no significant difference in the protein expression of p65 among groups. ConclusionBAI can inhibit the activation of BV-2 cells, thereby inhibiting the inflammatory response caused by LPS and further inhibiting the damage of inflammation to SH-SY5Y cells. The mechanism may be related to the regulation of the TLR4/MyD88/NF-κB signaling pathway and reduction of the inflammatory response, thus playing a neuroprotective role.

12.
Chinese Journal of Microbiology and Immunology ; (12): 130-136, 2023.
Article in Chinese | WPRIM | ID: wpr-995265

ABSTRACT

Objective:To investigate whether salidroside (SAL) improves lung tissue injury in rats with severe pneumonia (SP) through mediating toll-like receptor 4/nuclear transcription factor-κB/NOD-like receptor protein 3 (TLR4/NF-κB/NLRP3) signaling pathway.Methods:Seventy-five Wistar rats were used in this study. Fifteen of them were randomly selected as the sham operation group, and the others were induced by endotracheal infusion of Klebsiella pneumoniae ( Kp) suspension to construct a rat model of SP. After modeling, the rats were randomly divided into four groups with 15 rats in each group: model group, low-dose SAL group (30 mg/kg), high-dose SAL group (60 mg/kg) and dexamethasone (DXMS, 15 mg/kg) group. The sham operation group and the model group were given the same amount of normal saline for seven consecutive days. The wet-dry weight ratio (W/D) of lung tissues in each group was detected. HE and TUNEL staining methods were used to observe the morphology of lung tissues and cell apoptosis. The levels of TNF-α, IL-1β, IL-6, IL-18 and IL-10 in bronchoalveolar lavage fluid (BALF) were detected by ELISA. The expression of TLR4, myeloid differentiation factor (MyD88), NF-κBp65, phosphorylated NF-κBp65 (p-NF-κBp65) and NLRP3 at protein level in lung tissues was detected by Western blot. Results:The rat model of SP was successfully constructed by endotracheal infusion of Kp suspension. Compared with the sham operation group, the model group showed more severe edema of lung tissues, increased W/D value ( P<0.05), loose and incomplete alveolar structure, edema of alveolar wall and thickened alveolar wall, massive inflammatory cell infiltration, increased apoptosis rate as well as higher levels of TNF-α, IL-1β, IL-6 and IL-18 and lower lover of IL-10 in BALF. Moreover, the relative expression of TLR4, MyD88, NF-κBp65, p-NF-κBp65 and NLRP3 at protein level in lung tissues was increased in the model group ( P<0.05). Gradually improved pathological injury of lung tissues, decreased W/D value ( P<0.05), recovered alveolar structure, reduced alveolar wall edema and decreased cell apoptosis rate were observed in the low-dose and high-dose SAL groups as well as the DXMS group as compared with those of the model group. Besides, the three groups also showed decreased levels of TNF-α, IL-1β, IL-6 and IL-18 and increased level of IL-10 in BALF, and inhibited expression of TLR4, MyD88, NF-κBp65, p-NF-κBp65 and NLRP3 at protein level in lung tissues ( P<0.05). DXMS performed better in improving lung injury in rats with SP, followed by high and low doses of SAL ( P<0.05). Conclusions:SAL could reduce cell apoptosis and improve the Kp-induced lung injury in rats. The mechanism might be related to the blockage of TLR4/NF-κB/NLRP3 signaling pathway activation and inhibition of inflammatory factor expression.

13.
Chinese Journal of Anesthesiology ; (12): 176-180, 2023.
Article in Chinese | WPRIM | ID: wpr-994170

ABSTRACT

Objective:To evaluate the role of Toll-like receptor 4 (TLR4)/nuclear transcription factor κB (NF-κB) signaling pathway in long-term cognitive impairment induced by multiple exposures to sevoflurane anesthesia in neonatal rats.Methods:Seventy-five SPF healthy newborn Sprague-Dawley rats of either sex, aged 6 days, weighing 12-20 g, were divided into 3 groups ( n=25 each) using a random number table method: control group (group C), multiple exposures to sevoflurane anesthesia group (group S) and TLR4 inhibitor plus multiple exposures to sevoflurane anesthesia group (group I+ S). The rats in group S and group I inhaled 3% sevoflurane for 2 h at 6, 7 and 8 days after birth. TLR4 inhibitor TAK-242 10 mg/kg was intraperitoneally injected before each exposure to sevoflurane in group I, and the equal volume of normal saline was given instead in the other two groups. The spontaneous activity was evaluated by open field test on day 29 after birth, and the cognitive function was assessed by Morris water maze test on days 30-34 after birth. After the behavioral test, the blood samples from the abdominal aorta were collected, and then the rats were sacrificed under deep anesthesia to isolate the hippocampal tissues for measurement of the levels of S100β and neuron-specific enolase (NSE) in serum and hippocampal interleukin-1β (IL-1β), IL-6 and tumor necrosis factor α (TNF-α) (by enzyme-linked immunosorbent assay), expression of TLR4, NF-κB p65 and phosphorylated NF-κB p65 (p-NF-κB p65) (by Western blot) and for microscopic examination of the pathological changes of hippocampal CA1 region after HE staining. Results:Compared with group C, the escape latency was significantly prolonged, the number of crossing the original platform was reduced, the TLR4 expression was up-regulated, the ratio of p-NF-κB p65/NF-κB p65 was increased, the levels of serum S100β protein and NSE and hippocampal IL-1β, IL-6 and TNF-α were increased ( P<0.05), and the pathological changes in the hippocampal CA1 region were aggravated in group S. Compared with group S, the escape latency was significantly shortened, the number of crossing the original platform was increased, TLR4 expression was down-regulated, the ratio of p-NF-κB p65/NF-κB p65 was decreased, the levels of S100β and NSE in serum and hippocampal IL-1β, IL-6 and TNF-α were decreased ( P<0.05), and the pathological changes in hippocampal CA1 area were significantly attenuated in group P. Conclusions:The mechanism by which multiple exposures to sevoflurane anesthesia induces long-term cognitive impairment is related to activation of TLR4/NF-κB signaling pathway and increase in hippocampal inflammatory responses in neonatal rats.

14.
Chinese Journal of Orthopaedics ; (12): 849-857, 2023.
Article in Chinese | WPRIM | ID: wpr-993512

ABSTRACT

Objective:To prepare cell membrane-coated nanovesicles with targeted delivery of toll-like receptor 4 (TLR4) agonist, and to explore the effect and mechanism of inducing the polarization of tumor-associated macrophages (TAMs) and treating osteosarcoma.Methods:TLR4 agonist loaded nanovesicles were prepared by polycarbonate membrane extruders. The morphology and size of nanovesicles were detected by transmission electron microscopy (TEM) and particle size analyzer, and the drug loading performance of the nanovesicles to TLR4 agonist was investigated. TLR4 agonist loaded nanovesicles were co-incubated with macrophages in vitro, and the targeting ability of nanovesicles to macrophages and its role in regulating the function of macrophages were detected by confocal fluorescence microscopy. In vitro experiments, a cell co-culture system was established. After the upper layer macrophages were treated by the control group, the TLR4 agonist group and the TLR4 agonist loaded nanovesicle group, the lower layer osteosarcoma cells were collected for CCK-8 and cloning formation experiments to evaluate their effects on the proliferation and migration of osteosarcoma cells. In vivo experiments, an osteosarcoma subcutaneous graft tumor model was established, and mice were randomly divided into the control group, the TLR4 agonist group, and the TLR4 agonist loaded nanovesicle group. After the treatment by caudal vein, the tumor targeting ability of nanovesicles in vivo was explored through the in vivo imaging system, and the volume of tumor tissue was continuously detected. The subcutaneous tumors were stained to detect macrophage-related markers, and their effect on the polarization of macrophages was evaluated. The TUNEL fluorescence of tumor tissues was further detected.Results:TEM showed the round shape of TLR4 agonist loaded nanovesicle and the size was about 200 nm. The co-incubation of 0.05 mg TLR4 agonist with 0.1 mg nanovesicles was the best condition for the preparation of drug-loaded nanovesicles. The drug loading efficiency was about 35% and the drug loading content was about 0.11 mg/mg. The membrane-coated nanovesicles could efficiently load and deliver TLR4 agonist. TLR4 agonist loaded nanovesicles were labeled with DiD red fluorescent dye, and then the labeled nanovesicles were co-incubated with macrophages. It was found by confocal fluorescence microscopy that DiD labeled TLR4 agonist loaded nanovesicles significantly accumulated in macrophages, and the fluorescence of M1-type macrophage marker (iNOS) was significantly enhanced, which could induce M1 polarization of macrophages. In vitro experiments, it was found that the number of osteosarcoma cells in the TLR4 agonist loaded nanovesicle group was significantly reduced under the light microscope, and the cell morphology was wrinkled and rounded. CCK-8 and cloning formation experiments showed that the proliferation and migration ability of osteosarcoma cells in the TLR4 agonist loaded nanovesicle group was significantly reduced compared with the control group and the TLR4 agonist group. A subcutaneous graft tumor model was established. In vivo imaging experiments showed that TLR4 agonist loaded nanovesicles locally accumulated in tumor tissues in vivo, but were not distributed in other organs. The growth of tumor tissue was significantly inhibited in the TLR4 agonist loaded nanovesicle group. Moreover, the fluorescence of M1-type macrophage marker (iNOS) was significantly enhanced (relative fluorescence intensity: 3.27±0.19), while the fluorescence of M2-type macrophage marker (CD163) was significantly decreased (relative fluorescence intensity: 0.14±0.04). TUNEL fluorescence staining showed that the apoptosis level of osteosarcoma cells was significantly increased (relative fluorescence intensity: 9.53±0.21).Conclusion:Membrane-coated nanovesicles could targeted deliver TLR4 agonist to osteosarcoma, induce TAMspolarization, remodel tumor immunosuppressive microenvironment, promote cell apoptosis, and effectively kill osteosarcoma.

15.
Chinese Journal of Hepatobiliary Surgery ; (12): 285-291, 2023.
Article in Chinese | WPRIM | ID: wpr-993324

ABSTRACT

Objective:To compare the expression difference of Toll like receptor (TLR) and inflammatory factors between pancreatic cancer and normal pancreatic epithelial cells, and explore the correlation between TLR and inflammatory microenvironment.Methods:Normal pancreatic duct epithelium cells (HPNE) and pancreatic cancer cells (Panc-1 and Mia-PACA-2) were cultured and proteins were obtained. The expression of TLR family protein, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and myeloid differentiation factor 88 (MyD88) were examined by western blot in HPNE, Panc-1 and Mia-PACA-2. The correlations between TLR and inflammation cytokines of pancreatic cancer were analyzed by Pearson correlation analysis.Results:Compared with HPNE, the TLR2, TLR3, TLR4, TLR7, TLR8 and TLR9 were highly expressed in Panc-1 and Mia-PACA-2 (all P<0.05). Compared with Panc-1, the expression of TLR2 and TLR4 in Mia-PACA-2 were increased obviously, while the TLR9 expression was mildly decreased (all P<0.05). The expression of IL-6 in HPNE was found less than that in Panc-1 (0.52±0.03 vs. 0.76±0.04) and Mia-PACA-2 (0.52±0.03 vs. 1.12±0.09) with statistical differences ( P<0.05). Similarly, the expression of TNF-α was found significantly less than that of Panc-1 cells (0.63±0.04 vs. 0.87±0.06) and Mia-PACA-2 cells (0.63±0.04 vs. 0.95±0.10) with statistical differences (all P<0.05). The expression of IL-6 was found positively correlated with expressions of TLR2 ( r=0.964), TLR4 ( r=0.968), TLR7 ( r=0.844), TLR8 ( r=0.668) (all P<0.05), and the expression of TNF-α was found positively correlated with expressions of TLR2 ( r=0.805), TLR4 ( r=0.893), TLR7 ( r=0.847), TLR8 ( r=0.780) (all P<0.05). In contrast with HPNE, the expression of MyD88 was found highly expressed in Panc-1 (0.91±0.10 vs. 0.33±0.03) and Mia-PACA-2 (1.14±0.10 vs. 0.33±0.03) (all P<0.001). Compared with Panc-1, the expression of MyD88 in Mia-PACA-2 was obviously increased (1.14±0.10 vs. 0.91±0.10) with statistical difference ( P=0.048). Conclusion:The TLR family may play a critical role in development of pancreatic cancer by regulating the immune microenvironment, and its mechanism may be through upregulating MyD88 which functions as key signal transduction.

16.
Chinese Journal of Orthopaedic Trauma ; (12): 711-717, 2023.
Article in Chinese | WPRIM | ID: wpr-992771

ABSTRACT

Objective:To investigate the role and underlying mechanisms of inhibiting high mobility group box-1 (HMGB1) in the expression of matrix metalloproteinase-9 (MMP-9) in spinal cord astrocytes (AS) in rats after spinal cord injury (SCI).Methods:After an SCI model was established in Sprague-Dawley (SD) rats using a modified Allen's Weight-Dropping method and ethyl pyruvate (EP) or glycyrrhizin (GL) was used to inhibit the effect of HMGB1, the rats were divided into a sham group, an SCI group, an SCI+EP (50 mg/kg) group, and an SCI+GL (100 mg/kg) group. The expression levels of glial fibrillary acid protein (GFAP) and MMP-9 in spinal cord AS were observed. After the spinal cord AS in SD rats was cultured and incubated by the oxygen-glucose deprivation/reoxygenation (OGD/R) procedure, the expression of MMP-9 protein was detected at 6 h/R 6 h, 12 h, 24 h, and 48 h after OGD. The time point with the highest expression was chosen in the subsequent experiments as an OGD/R group. HMGB1 was inhibited by HMGB1 shRNA or EP to observe the effect of HMGB1 on the expression of MMP-9 protein in AS treated with OGD/R. Then, toll-like receptor 4 (TLR4) inhibitor, TIR-domain-containing adaptor inducing interferon- β (TRIF) inhibitor, and nuclear factor-kappa B (NF- κB) inhibitor were used to investigate the effects of TLR4/TRIF/NF- κB signaling pathway during the regulation of HMGB1 on MMP-9 in vitro. Results:Western blot showed that the expression of MMP-9 protein in the spinal cord was significantly increased in rats at 1 d after SCI, and the expression of MMP-9 protein in the SCI+EP group and the SCI+GL group was significantly lower than that in the SCI group ( P<0.001). Immunofluorescence showed that GFAP and MMP-9 proteins were co-localized in the spinal cord after SCI, and the expression of GFAP and MMP-9 proteins in the SCI+EP and SCI+GL groups was significantly lower than that in the SCI group ( P<0.05). Since the expression of MMP-9 protein in the spinal cord AS cultured in vitro was significantly higher in the OGD 6h/R 12h group than that in the normal group and the OGD 6h/R 6h, 24, and 48 h groups, the OGD 6h/R 12h was taken as the OGD/R group. The MMP-9 protein expression in AS in the OGD/R+HMGB1 shRNA group and the OGD/R+EP group was significantly lower than that in the OGD/R group ( P<0.001). In the cultured AS, moreover, inhibiting TLR4, TRIF, and NF- κB reduced MMP-9 protein expression after OGD 6 h/R 12 h when compared with that in the OGD/R group ( P<0.001). Conclusions:HMGB1 inhibition may result in a reduction in MMP-9 expression both in the spinal cord AS in SCI rats and in AS after OGD/R treatment in vitro. HMGB1 may regulate MMP-9 protein expression in AS after OGD/R treatment via the TLR4/TRIF/NF- κB signal pathway.

17.
Journal of Chinese Physician ; (12): 1046-1050, 2023.
Article in Chinese | WPRIM | ID: wpr-992421

ABSTRACT

Objective:To explore the effect of silent information regulator 1 (SIRT1) activator SRT1720 on inflammatory response in chronic periodontal disease mice and whether its mechanism is related to the toll like receptor 4 (TLR4)/nuclear factor κB (NF-κB) signaling pathway.Methods:Forty 8-week-old male C57BL/6 mice were selected and divided into a blank control group ( n=8) and an experimental group ( n=32). The experimental group mice were ligated with periodontal pockets and fed with high sugar drinking water. The experimental group was randomly divided into a model group ( n=8) and an SRT1720 group ( n=24). The blank control group and the model group were given physiological saline orally every day. The SRT1720 group was further divided into a low dose group [20 mg/(kg·d), n=8], a medium dose group [50 mg/(kg·d), n=8], and a high dose group [100 mg/(kg·d), n=8] based on the different doses of SRT1720. Four weeks later, the expression levels of interleukin-6 (IL-6), interleukin-1β (IL-1β) and monocyte chemoattractant protein-1 (MCP-1) in gingival crevicular fluid of mice in each group were detected by enzyme linked immunosorbent assay (ELISA); The real-time quantitative polymerase chain reaction (RT-qPCR) method was used to detect the mRNA expression levels of IL-6, IL-1β, MCP-1, SIRT1, TLR4, NF-kB p65 in the gingival tissue of mice in each group; Western blot was used to determine the expression levels of SIRT1, TLR4, and NF-κB p65 proteins in mouse gingival tissue. Results:Compared with the blank control group, the expression levels of IL-6, IL-1β, and MCP-1 inflammatory factors in the gingival crevicular fluid of experimental group mice increased, while the expression levels of IL-6, IL-1β, MCP-1, TLR4, NF-κB p65 mRNA in gingival tissue increased. The expression levels of TLR4, NF-κB p65 protein in gingival tissue increased, while the expression levels of SIRT1 mRNA and protein in gingival tissue decreased, with statistical significance (all P<0.05). Compared with the model group, the expression levels of IL-6, IL-1β, and MCP-1 inflammatory factors in the gingival crevicular fluid, IL-6, IL-1β, MCP-1, TLR4, NF-κB p65 mRNA expression levels in gingival tissue, and TLR4, NF-κB p65 protein expression levels in the gingival tissue of SRT1720 group mice showed a dose-dependent decrease. The expression levels of SIRT1 mRNA and protein in gingival tissue showed a dose-dependent increase, and the differences were statistically significant (all P<0.05). Conclusions:SIRT1 activator SRT1720 can improve the inflammatory response of chronic periodontal disease mice, which may be related to the inhibition of TLR4/NF-kB signaling pathway.

18.
Journal of Chinese Physician ; (12): 1025-1029, 2023.
Article in Chinese | WPRIM | ID: wpr-992417

ABSTRACT

Objective:To investigate the impact and interaction of Toll like receptor 2 (TLR2) and interferon regulatory factor 5 (IRF-5) gene polymorphisms on the susceptibility to neonatal sepsis.Methods:A total of 78 cases of neonatal septicemia patients admitted to Baoding Children′s Hospital from July 2018 to August 2021 were prospectively selected as the study group, and 78 cases of healthy newborns in the same period were selected as the control group. The TLR2 and IRF-5 gene polymorphisms and the levels of inflammatory markers [C-reactive protein (CRP), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in different genotypes of infants were compared between the two groups. We evaluated the relationship between TLR2 and IRF-5 genotypes, inflammatory markers, and susceptibility to neonatal sepsis, and analyzed the interaction between their gene polymorphisms and susceptibility to neonatal sepsis.Results:There were significant differences in the distribution of TLR2 (rs3804099) and IRF-5 (rs2004640) loci genotype and Allele frequency between the two groups (all P<0.05); The serum CRP, TNF-α, and IL-6 levels in children with TLR2 (rs3804099) genotype TT genotype [(111.12±30.87)mg/L, (77.50±20.02)pg/ml, (40.27±11.31)pg/ml] were higher than those in children with CC/CT genotype [(72.46±24.51)mg/L, (54.18±17.65)pg/ml, (28.34±9.05)pg/ml], and the differences were statistically significant (all P<0.05). The serum CRP, TNF-α, and IL-6 levels [(113.90±28.94)mg/L, TNF-α (79.84±19.82)pg/ml, IL-6 (41.05±11.49)pg/ml] in children with the IRF-5 (rs2004640) TT genotype were higher than those in children with the GG/GT genotype [(70.88±22.16)mg/L, (52.27±16.73)pg/ml, (27.96±9.75)pg/ml], and the differences were statistically significant (all P<0.05). The TT genotypes at TLR2 (rs3804099) and IRF-5 (rs2004640) loci were positively correlated with serum CRP, TNF-α, and IL-6 levels (all P<0.05); The TT genotypes at TLR2 (rs3804099) and IRF-5 (rs2004640) loci were independent risk factors for susceptibility to neonatal sepsis (all P<0.05); The TT genotype at the TLR2 (rs3804099) locus and the TT genotype at the IRF-5 (rs2004640) locus exhibited a positive interaction in susceptibility to neonatal sepsis ( OR=7.467, γ=1.728). Conclusions:TLR2 (rs3804099) TT genotype and IRF-5 (rs2004640) TT genotype significantly increase the susceptibility to neonatal sepsis, and there is a positive interaction between the two.

19.
Journal of Chinese Physician ; (12): 859-863, 2023.
Article in Chinese | WPRIM | ID: wpr-992390

ABSTRACT

Objective:To study the expression of Toll like receptor 3 (TLR3) in human adenocarcinoma of the lung cells induced by respiratory syncytial virus (RSV) and its significance in the diagnosis of pneumonia in children.Methods:A549 cells were divided into RSV infection group [added 1 μg/ml Lipopolysaccharide (TLR3 agonist) transfected RSV virus after 150 μl intervention], Lipopolysaccharide stimulation group (added 1 μg/ml Lipopolysaccharide 150 μl intervention) and normal control group (normal culture). The mRNA expressions of tumor necrosis factor-α, interleukin 8, TLR3 protein and TLR3 in A549 Cells of different groups were compared. We prospectively selected 80 children with RSV infectious pneumonia admitted to Baoding Second Central Hospital from August 2019 to October 2021 as the RSV pneumonia group, and sixty children with common pneumonia were taken as the common pneumonia group, and 60 healthy children in our hospital were taken as the control group. The mRNA expression of serum TLR3 in different groups was compared, and the diagnostic efficacy of serum TLR3 in RSV pneumonia was evaluated by receiver operating characteristic.Results:There was a statistically significant difference in the expression of TLR3 protein among different groups of A549 cells ( P<0.001). The expression differences of TLR3 mRNA in different groups of A549 cells at different time points were statistically significant(all P<0.001). There was significant difference in the expression of tumor necrosis factor-α and interleukin 8 of A549 cells at different time points in different groups (all P<0.05). There was a statistically significant difference in the expression of serum TLR3 mRNA among the three groups of subjects ( F=155.237, P<0.001). The critical value for TLR3 gene diagnosis was 66.87, with corresponding sensitivity of 73.75%, specificity of 70.83%, and the area under curve (AUC) of 0.803(95% CI: 0.753-0.855). Conclusions:Respiratory syncytial virus induces human lung cancer cells and promotes disease progression through TLR3 expression; Serum TLR3 can be used for the diagnosis of RSV pneumonia.

20.
Chinese Journal of Endemiology ; (12): 17-23, 2023.
Article in Chinese | WPRIM | ID: wpr-991571

ABSTRACT

Objective:To observe the expression levels of Toll-like receptor 4 (TLR4) signaling pathway-related proteins and their phosphorylation in the liver tissues of rats with inorganic arsenic poisoning, and to explore the role of TLR4-mediated inflammatory signaling pathway in arsenic-induced liver fibrosis injury.Methods:Eighteen healthy weanling SD rats were divided into 3 groups according to their body weight (80 - 100 g) using a random number table (6 rats in each group, half males and half females). The control group was given 10 ml/kg of normal saline by gavage. The sodium arsenite (NaAsO 2) exposure group was given 10 mg/kg of NaAsO 2 by gavage. The TAK-242 intervention group was given 10 mg/kg of NaAsO 2 by gavage, and 0.5 mg/kg of TAK-242 was also administered intraperitoneally to inhibit TLR4 after 12 weeks. All rats were administered 6 days a week for 36 weeks. At the end of the treatment, the liver tissues and serum of the rats in each group were collected. HE and Masson staining were used to observe the pathological and fibrotic changes of the liver tissues. Automatic biochemical analyzer was used to detect serum liver function indexes of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP). Western blot was used to detect the expression changes of rat liver fibrosis protein α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), Vimentin and TLR4 signaling pathway-related proteins TLR4, nuclear factor κB (NF-κB)-p65 subunit (p65), NF-κB-p50 subunit (p50) and their phosphorylation p-p65 and p-p50 expression levels. Enzyme-linked immunosorbent assay (ELISA) was used to detect the secretion levels of inflammatory related factors interleukin (IL)-6, tumor necrosis factor-α (TNF-α) and IL-10. Results:HE and Masson staining results showed that compared with the control group, the NaAsO 2 exposure group showed significant inflammatory cell infiltration, hepatocyte necrosis and collagen fibrous deposition, while the TAK-242 intervention group showed improvement of the inflammatory cell infiltration and reduction of collagen fibrous deposition compared with the NaAsO 2 exposure group. The results of serum liver function indexes showed that ALT, AST and ALP in NaAsO 2 exposure group were increased compared with the control group, but the TAK-242 intervention group was significantly decreased compared with the NaAsO 2 exposure group ( P < 0.05). Western bolt results showed that in NaAsO 2 exposure group, the expression levels of fibrosis protein α-SMA, TGF-β1 and Vimentin (1.04 ± 0.19, 0.92 ± 0.14, 1.20 ± 0.21) and TLR4 signaling pathway-related proteins and their phosphorylation TLR4, p50, p-p50 and p-p65 (1.16 ± 0.21, 0.95 ± 0.16, 1.24 ± 0.23, 1.56 ± 0.25) were higher than the control group (0.44 ± 0.08, 0.42 ± 0.08, 0.72 ± 0.07, 0.69 ± 0.15, 0.71 ± 0.11, 0.46 ± 0.07, 0.54 ± 0.11, P < 0.05), and the TAK-242 intervention group (0.60 ± 0.13, 0.59 ± 0.16, 0.49 ± 0.11, 0.47 ± 0.08, 0.86 ± 0.09, 0.79 ± 0.14, 1.02 ± 0.17) were lower than the NaAsO 2 exposure group ( P < 0.05). There was no significant difference in the expression level of TLR4 signal pathway-related protein p65 among the three groups ( F = 14.29, P = 0.053). ELISA results showed that the secretion levels of IL-6 and TNF-α [(98.89 ± 4.58), (83.25 ± 4.57) ng/g] in rats liver tissues of the NaAsO 2 exposure group were higher than the control group [(27.30 ± 3.92), (27.77 ± 1.83) ng/g, P < 0.05], while the secretion level of IL-10 [(36.88 ± 3.86) ng/g] was lower than the control group [(77.96 ± 7.87) ng/g, P < 0.05]. In TAK-242 intervention group, IL-6 and TNF-α secretion levels [(44.32 ± 3.60), (36.51 ± 2.93) ng/g] were lower and IL-10 secretion level [(60.40 ± 4.94) ng/g] was higher compared with the NaAsO 2 exposure group ( P < 0.05). Conclusion:TLR4-mediated inflammatory signaling pathway-related proteins and their phosphorylation are highly expressed in the liver tissues of rats with inorganic arsenic poisoning, and inhibition of TLR4 signaling pathway could significantly reduce the degree of liver fibrosis injury caused by inorganic arsenic in rats.

SELECTION OF CITATIONS
SEARCH DETAIL